在第三座讲座中,我们已经看到了作用于复合量子系统“ AE”的某些纯量子状态,时间上的和PVM如何产生量子状态,量子通道和POVM,而限制在子系统“ A”时。现在,我们将朝相反的方向前进,并表明作用在量子系统“ A”上的每个量子状态,量子通道和POVM都来自作用于某些复合系统“ AE”的相应类型的对象。这意味着封闭量子系统的假设和开放量子系统的假设实际上是等效的。在数学上,将对象扩展到具有一些附加结构的较大对象称为扩张,并且本节中证明的定理给出了该一般原理的一些示例。
• 发达国家 40% 的可用清洁水用于工业用途。减少水损失意味着减少在水和废水处理以及加热、储存和在建筑物内输送水的能源方面的支出。与更现代、更高效的供水系统相比,老化的水基础设施不可避免地会导致供水和废水服务成本上升。近 80% 的美国公用事业公司选择铜作为供水管道,因为铜可靠、可回收、耐腐蚀,可防止污染物渗透管壁,保证处理过的水的安全。用铜管建造的建筑物可以使用长达 50 年。在美国,密歇根州弗林特市和华盛顿特区等城市正在用铜管取代过时且不安全的铅水管。
量子力学的形式基于三个基本概念:状态、时间演化和测量。一般物理系统的状态描述了它的所有属性,或者至少是某些物理描述中我们关心的所有属性。时间演化的形式描述了系统在处于某个初始状态之后随时间如何演化。为了计算系统的时间演化,我们通常需要知道其组成部分如何相互作用。在经典物理学中,我们现在就完成了,但在量子物理学中,测量过程起着特殊的作用。形式上,测量与时间演化在两个方面有区别:虽然量子力学中的时间演化将是可逆的,即某一时刻的状态唯一地决定了之前时刻的状态,但对于状态经历不可逆变化的测量而言,情况并非如此。时间演化也是确定性的,即所有时刻的状态都由之前时刻的状态唯一决定。然而,测量从根本上讲是概率性的,即,随机测量结果将以由测量和被测状态确定的概率分布被观察到。调和这两种相互冲突的现实描述的问题称为测量问题。至今,它仍然是量子力学基础上的一个悬而未决的问题。虽然量子理论的奇怪预测已经在实验中无数次地重复,并且精度很高,但我们距离解决这个问题还很远。在通往量子力学一般形式主义的道路上,我们将从封闭量子系统的描述开始。当量子系统不与任何其他量子系统相互作用时,它被称为封闭的。从历史上看,这是量子理论的起点,但后来人们发现这种描述并不令人满意:即使在控制良好的实验室环境中,量子系统也会与环境相互作用(例如,通过电流、放射性背景或宇宙辐射的磁场),因此不能被认为是封闭的。原则上,我们可以将整个宇宙视为一个封闭的量子系统,但这将非常复杂。相反,我们将开发开放量子系统的一般形式,即可能与环境相互作用的量子系统,其中包括封闭量子系统作为特例。这将导致量子信息理论和整个课程中普遍使用的一般形式。
现实物理和化学系统中的电子传输通常涉及与大环境进行非平凡的能量交换,这需要定义和处理开放量子系统。由于开放量子系统的时间演化采用非幺正算子,因此开放量子系统的模拟对于仅由幺正算子或门构成的通用量子计算机提出了挑战。这里,我们提出了一种通用算法,用于实现任何非幺正算子对量子设备上任意状态的作用。我们表明,任何量子算子都可以精确分解为最多四个幺正算子的线性组合。我们在零温度和有限温度振幅阻尼通道中的两级系统中演示了这种方法。结果与经典计算一致,显示出在模拟中期和未来量子设备上的非幺正操作方面的前景。
现实物理和化学系统中的电子传输通常涉及与大环境进行非平凡的能量交换,这需要定义和处理开放量子系统。由于开放量子系统的时间演化采用非幺正算子,因此开放量子系统的模拟对于仅由幺正算子或门构成的通用量子计算机提出了挑战。这里,我们提出了一种通用算法,用于在量子设备上实现任何非幺正算子对任意状态的作用。我们表明,任何量子算子都可以精确分解为最多四个幺正算子的线性组合。我们在零温度和有限温度振幅阻尼通道中的两级系统中演示了这种方法。结果与经典计算一致,显示出在模拟中期和未来量子设备上的非幺正操作方面的前景。
1 自旋和弹簧 7 1.1 量子谐振子:弹簧模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.1 薛定谔方程和泡利矩阵. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16
例如,零售终端客户会把他们从电力公司购买和消费的电力所产生的温室气体排放归类为范围 2 排放。但是,为这些客户生产电力的电力公司会把相关的温室气体排放归类为范围 1 直接排放。这样,范围分类有助于防止范围 1 和 2 内的组织之间重复计算排放量。然而,范围 3 的温室气体排放并非如此。通过在不同范围内报告相同的排放源,电力供应商和终端消费者可以避免对温室气体排放源的排放责任做出混淆和/或矛盾的主张。附录 A 提供了按范围组织的电力行业公司典型温室气体排放源的示例。
基于基因的疗法的承诺正在加速速度,有155次活跃的临床试验和多个美国食品和药物管理局批准用于治疗性寡核苷酸的批准,到目前为止,大多数包含改良的磷酸盐链接。这些不自然的链接具有理想的生物学和物理特性,但通常使用磷氧化矿化化学来访问。我们报告了一个灵活,有效的[P(v)] - 可以随意将各种磷酸盐连接到寡核苷酸中。这种方法使用易于访问的试剂,不仅可以将立体置换或外消旋硫代磷酸盐安装,还可以将(S,R或RAC) - PS与天然磷酸二酯(PO 2)(PO 2)和磷酸化岩(PS 2)连接到DNA和其他修饰的核苷酸聚合物的任何组合。该平台在标准化的耦合方案下轻松访问这种多样性,并具有可持续准备的稳定P(V)试剂。i
在过去几年中,已广泛使用了超时订购的相关器(OTOC),以研究多体系统中的信息混乱和量子混乱。在本文中,我们扩展了Styliaris等人的平均双分子OTOC的形式主义[Phys。修订版Lett。 126,030601(2021)]到开放量子系统的情况下。 动力学不再是统一的,而是通过更通用的量子通道(痕量保留,完全正面的地图)来描述。 可以以精确的分析方式处理此“开放双分OTOC”,并显示出两个量子通道之间的距离。 此外,我们的分析形式揭示了互动的熵贡献,从信息争夺和环境破裂的贡献中,使后者可以构成前者。 为了阐明这种微妙的相互作用,我们分析研究了量子通道的特殊类别,即驱动通道,纠缠破裂的通道等。 最后,作为物理应用,我们在数值上研究了耗散性的多体旋转链,并展示了如何使用竞争性熵效应来区分可集成和混乱的状态。Lett。126,030601(2021)]到开放量子系统的情况下。动力学不再是统一的,而是通过更通用的量子通道(痕量保留,完全正面的地图)来描述。可以以精确的分析方式处理此“开放双分OTOC”,并显示出两个量子通道之间的距离。此外,我们的分析形式揭示了互动的熵贡献,从信息争夺和环境破裂的贡献中,使后者可以构成前者。为了阐明这种微妙的相互作用,我们分析研究了量子通道的特殊类别,即驱动通道,纠缠破裂的通道等。最后,作为物理应用,我们在数值上研究了耗散性的多体旋转链,并展示了如何使用竞争性熵效应来区分可集成和混乱的状态。
fuine量子现象与某种干扰模式相连,或者与不同的可观察物的不相容性有关。在量子相干的框架内尚未研究[2,17,27,43,63,63,67,76,78,78,86,93,102],简单地说,它是一种评估具有系统状态的抗抗强度的方法[17]。量子相干性也可以在资源理论的术语中进行描述[11、20、90、91]。由于资源理论服务于热力学基础[26],因此在Quan-Tum热力学的背景下,也已对量子相干性和实现的作用[8,10,53,54,85,105]进行了彻底研究[76]。在能够进行工作的量子设备中,量子电池具有特殊的位置。量子电池是基本的重要性,是一项激烈研究的领域[1、3-5、7、11、37、71、74、79、90、95],在Thermodody-Namics [6、12-14、31、33、41、61、68]中。我们通过Hamiltonian H 0对量子电池进行建模,该量子电池在时间上产生了能量的概念,并且随时间演化的量子状态ρt将ET(ρ)=ρt播放。在这里,图e t是一个不需要统一的通用量子通道,因为我们还考虑了开放量子系统的可能性[34,49,90]。提取的或存储的工作导致与初始状态不同的方式填充H 0的水平。先前的工作表明,量子相干性在从量子系统中提取工作中的重要性。同时,[75]显示了量子相干的行为如何构成fur-在[66]中,作者介绍了可以通过热过程提取的汉密尔顿特征性的相干性。