1986 年至 1989 年在线所有断路器的断路器可靠性。按中断介质划分..................................................... 49 1986 年至 1989 年在线所有变压器的变压器可靠性。按电压组划分......................................................... 49 原型中包含的 Alvey 变压器和断路器。..............50 变压器故障模式和影响分析 ................................ 52 断路器故障模式和影响分析 ................................ 54 可监控的断路器状况 ................................ 56 可离线监控的断路器状况 ................................ 57 可监控的电力变压器状况 ................................ 58 BPA 变电站变压器和断路器的 RCM 估计经济效益 ................................................................................ 72 断路器和变压器类型 RCM 效益 ................................ 75 断路器和变压器类型 RCM 效益(续)................. 76 断路器和变压器类型 RCM 效益(续)................. 77 断路器和变压器类型 RCM 效益(续)................. 78 断路器和变压器类型 RCM 效益(续)................. 79 可能的维护指标 ............................................. 84
• 几何 – 体积、界面 • 使用 – 载荷、循环次数、温度、腐蚀 • 击倒因素(温度、湿度、表面粗糙度等) • 安全裕度 • 故障模式和影响 • 设计值的确定 • 认证方法(分析、测试或两者) • 测试范围 – 与资格认证的界限模糊
摘要 碳化硅 (SiC) 器件具有许多优势,尤其是在功率转换电路中,这些电路对于效率至关重要。这些应用包括太阳能逆变器和电动汽车,它们也可能需要使用数十年。对于这些应用,非常高的效率和长期可靠性的结合至关重要。在这些应用中部署 SiC 的挑战在于,该技术处于比硅更早的发展阶段。这意味着部署 SiC 的最佳方法仍在探索中,并且仍然需要更好地理解和更有效地缓解 SiC 器件特有的一些故障模式。英飞凌多年来一直致力于解决这些问题,因此拥有必要的见解和经验,既可以帮助客户充分利用 SiC 器件,又可以帮助他们理解和缓解其故障机制,以确保必要的可靠性。本文将深入探讨有关 sic 功率器件的长期可靠性和故障模式的具体方面,同时考虑到与应用相关的任务概况。
1 简介 1 1.1 概述 1 1.1.1 软错误的证据 2 1.1.2 软错误的类型 3 1.1.3 减轻软错误影响的经济有效的解决方案 4 1.2 故障 6 1.3 错误 7 1.4 指标 9 1.5 可靠性模型 11 1.5.1 可靠性 12 1.5.2 可用性 13 1.5.3 其他模型 13 1.6 互补金属氧化物半导体技术中的永久性故障 14 1.6.1 金属故障模式 15 1.6.2 栅极氧化物故障模式 17 1.7 CMOS 晶体管中的辐射诱发瞬态故障 20 1.7.1 阿尔法粒子 20 1.7.2 中子 21 1.7.3 阿尔法粒子和中子与硅晶体的相互作用 26 1.8 阿尔法粒子和中子撞击的架构故障模型 30 1.9 静默数据损坏和检测到的不可恢复错误 32 1.9.1 基本定义:SDC 和 DUE 32 1.9.2 SDC 和 DUE 预算 34
实现良好的安全性对于航空业至关重要:英国批准用于航空业的每一个系统都必须经过正式审查,然后才能准备“安全案例”。这是一个文档系统,可以证明该系统可以安全使用。深入了解故障模式是先决条件。这样,安全案例就可以记录所采取的步骤,以确保以充分保护飞机的方式控制此类故障的影响。作为深入了解 GPS 故障模式过程的一部分,NATS 开展了本文所述的两个项目。第一个项目检查了安装在盈利的波音 747-400 上的 GPS 接收器的可靠性数据。该项目于 1994 年 4 月至 1995 年 12 月期间运行,之后因有更好的 GPS 设备可用而关闭。第二个项目涉及从位于伦敦机场的 4 个 GPS 接收器收集数据,数据收集时间从 1995 年底到现在。可以从这两个项目中吸取重要的教训。
过去几十年来,世界各地对民用和军用飞机及直升机的航空发动机和结构部件的故障分析进行了持续全面的研究。虽然取得了很大进展,但随着新设计、材料和服务以及运营需求的引入,经常会遇到无法预见的问题。资源紧缩、预算限制、高维护和更换成本以及环境限制对管理航空工业提出了新的控制和方法。本文的目的是回顾过去几十年在分析和控制飞机老化和故障问题方面取得的进展。工作包括:1)。从物理学角度分析飞机和直升机的损伤和故障模式和机制;2)。聚合物基复合材料和陶瓷故障的建模和分析解决方案。该主题的研究领域非常广泛,可能从金属合金延伸到新材料(聚合物/陶瓷复合材料、铝化物),从传统到先进的结构设计,加工技术的进步等等。本文重点介绍了基于结构完整性概念的历史故障和经验教训、故障模式和机制、各种飞机部件的故障、结构复合材料的故障机制以及案例研究。
人们对复杂工程系统的可靠性越来越感兴趣,尤其是系统的全寿命风险分析。一个复杂系统,例如本文研究的民用飞机发动机,在其整个生命周期中包含多种潜在故障模式,这些故障模式是由经历不同恶化过程的各种子系统和组件故障造成的。为了满足航空业高效的更换维护策略的要求,量化复杂系统中各个组件的风险以准确预测备件需求非常重要。我们提出了一种新颖的数据驱动混合学习算法,它包含三个构建块:基于威布尔分布的预定义可靠性模型、自动无监督聚类以及质量检查与输出。该算法能够识别风险最高的子系统,并定量计算相关的可靠性模型。由于所有组件风险都遵循威布尔分布,因此可以获得参数。对民用飞机发动机机队进行的案例研究表明,该算法能够从系统级性能记录中更好地了解子系统级风险,从而提高维护策略的有效执行。
在本文中,提出了由高模量碳纤维增强聚合物(CFRP)层压板增强的结构钢梁的剪切和弯曲行为。完全,在3分弯曲测试设置下测试了18个钢样本,包括6个不加强的梁作为对照样品和12个具有简单支撑的强化钢梁。使用键合系统加强所有标本。研究了不同参数的影响,包括钢梁的长度,样品的截面大小,CFRP层压板的数量以及CFRP层压板的位置。基于预期的故障模式,在张力法兰,压缩法兰和梁网的表面上实现了粘合的层压板。在测试的梁中观察到了弯曲,剪切和侧向屈曲失败的三种故障模式。这些实验的主要目标是评估负载能力,梁延展性和初始刚度的增强。结果表明,加强钢梁的产量载荷,最终负载能力和能量吸收分别提高了15%,29%和28%。最后,为了预测测试结果并比较实际和预测的阀门,进行了分析和数值研究。
液晶聚合物 MEMS 封装 Amaresh Mahapatra、Robert Mansfield 和 Lian Li Linden Photonics, Inc. 270 Littleton Rd., # 29 Westford, MA 01886 摘要 军方关注 MEMS 设备的长期生存力和可靠性,特别是在受到高 G 冲击(例如从大炮发射弹药时)时。研究人员一致认为,与封装相关的故障机制是所有故障模式的主要因素。此外,封装在长期储存过程中会性能下降。高 g 条件下的主要封装相关故障模式包括:• 加工过程中产生的松散碎片的移动。• 陶瓷封装开裂• 盖子和基板分离• 由于封装非密封,储存过程中盖子/基板密封和引线键合性能下降。Linden Photonics, Inc. 正在开发晶圆和芯片级封装以缓解这些故障模式。Linden Photonics 拥有与微电子和光电子近密封和抗辐射封装相关的专业知识和专有技术。 Linden 为海军开发了强力鱼雷光缆 (STFOC)。将介绍显示进展的数据和测量结果。1. 光电和 MEMS 元件的近密封封装 Linden 的 LCP 护套光纤在电光设备封装领域具有巨大潜力。封装工程师面临的主要挑战之一是在光输入和输出端口周围创建密封。这种密封通常是通过剥离和金属化光纤末端,然后将其焊接到金属化玻璃套管中来创建的。最后将套管焊接到设备的金属外壳中。剥离和金属化光纤是一项昂贵、劳动密集型的操作。处理裸露的金属化光纤也很成问题,并且在封装过程中光纤断裂很常见。