在过去的七十年中,G-氨基丁酸(GABA)引起了科学家在植物,动物和微生物中的普遍性以及其生理意义的极大关注,因为它是参与多种途径和过程的信号分子的生理意义。最近,食品和制药行业还显示出对GABA的兴趣显着增加,因为它对人类健康的潜在潜在好处以及消费者对促进健康功能化合物的需求,从而释放了很多GABA富含GABA的产品。然而,许多农作物物种在其可食用的部分中积累了可观的GABA水平,并可以帮助满足GABA每日摄入的摄入量以促进积极的健康影响。因此,植物育种者致力于用改善GABA含量的精英品种繁殖。在这方面,番茄(溶胶番茄)是全球生产和消费最多的蔬菜,也是一种含水果的型号,它因其积累了显着的GABA水平而受到了很多考虑。尽管已经实施了许多不同的策略,从经典的杂交到诱发诱变,但新的植物育种技术(NPBT)已经达到了最佳的GABA积累,从而导致红色成熟的番茄果实以及对GABA代谢和基因功能的启示。在这篇综述中,我们总结,分析和比较了所有有助于番茄GABA育种的研究,并就最新的NPBT进行进一步的讨论和建议,这些NPBT可以使这一过程达到更高的精度和效率。本文档还提供了指南,其他农作物的研究人员可能会利用番茄在更有效的GABA育种计划中取得的进展。
亚蛛网膜下腔出血(SAH)后的总体运动功能障碍(SAH)的神经机制仍然未知。γ-氨基丁酸(GABA)提出的假设提出降低神经元GABA浓度,随后缺乏GABA介导的抑制作用会导致SAH后运动障碍。这项研究旨在探讨SAH患者的GABA水平与运动性能的行为度量之间的相关性。使用质子磁共振光谱法评估了40例SAH和10名年龄匹配的健康对照患者的运动皮质GABA水平。GABA和N-乙酰糖(NaA)比在原发性运动皮层的正常灰质中测量。还评估了GABA浓度与手机性能之间的关系。结果显示,SAH左运动皮层患者的GABA水平显着低于对照组(GABA/NAA比:0.282±0.085和0.341±0.031; p = 0.041)。反应时间(RTS)是一种潜在地取决于GABA能突触传播的运动性能的行为度量,患者的显着时间比对照组的时间更长(分别为936.8±303.8 vs. 440.2±67.3 ms; p <0.001)。此外,运动皮质GABA水平和RTs在患者之间表现出显着的正线性相关性(r = 0.572,rs = 0.327,p = 0.0001)。因此,SAH后主要运动皮层中GABA水平的降低可能导致神经元功能的皮质抑制受损,并表明运动皮层中GABA介导的突触传递对于RT至关重要。
通过C-氨基丁酸A型(GABA A)受体起作用的全一麻醉性依托氨酸酯会损害麻醉下新记忆的形成。本研究介绍了发生这种情况的分子和细胞机制。在这里,使用携带GABA A受体(GABA A R)B 2-N265M突变的新的基因工程小鼠系,我们测试了受体的作用,该受体的作用,这些受体的作用,该受体的作用融合了GABA A受体B 2对B 3 vers b 3亚基至抑制长期增强(LTP),一种学习和记忆模型。我们发现来自B 2-N265M小鼠的脑切片抵抗了对LTP的依托竞技抑制,这表明B 2-GABA A RS是该模型中的重要目标。由于这些受体在hip-pocampus中的中间神经元最大程度地表达,因此该发现支持在依托匹马座控制突触可塑性中的神经元调节中的作用。然而,B 2亚基也由金字塔神经元表示,因此它们也可能有助于。因此,使用先前建立的B 3-N265M小鼠的系列,我们还检查了B 2-与B 3-GABA A RS对GABA A的贡献,因为树突抑制作用缓慢,因为树突抑制作用特别适合控制突触可塑性。我们还通过进食和反馈抑制来研究了它们在人口活动的长期促销中的作用。We found that both b 2- and b 3-GABA A Rs contribute to GABA A,slow inhibition and that both b 2- and b 3-GABA A Rs contribute to feedback inhibition, whereas only b 3-GABA A Rs contrib- ute to feedforward inhibition.我们得出的结论是,B 2-GABA A RS的调节对于依托匹马抑制LTP至关重要。此外,在锥体神经元上通过gaba a rs发生的程度,它是通过调节反馈抑制。
小白蛋白阳性 γ -氨基丁酸 (GABA) 能中间神经元与锥体神经元之间的突触相互作用会引起皮质伽马振荡,而这种振荡在精神分裂症中是异常的。这些皮质伽马振荡可以通过伽马波段听觉稳态反应 (ASSR) 来指示,ASSR 是一种强大的脑电图 (EEG) 生物标记,越来越多地用于推动精神分裂症和其他相关脑部疾病的新疗法的开发。尽管 ASSR 很有前景,但 ASSR 的神经基础尚未被确定。本研究调查了健康受试者和精神分裂症患者 ASSR 的潜在来源。在本研究中,开发了一种非侵入性地表征源位置的新方法,并将其应用于从接受 ASSR 测试的 293 名健康受试者和 427 名精神分裂症患者获得的 EEG 记录。结果显示,在健康受试者和精神分裂症患者中,颞叶和额叶源均存在分布式网络。在这两组中,主要的 ASSR 源均位于右侧颞上皮层和眶额皮层。除了这些区域的正常活动外,精神分裂症患者的左侧颞上皮层、眶额皮层和左侧额上皮层的伽马波段 ASSR 源偶极子密度 (ITC > 0.25) 显著降低。总之,颞叶和额叶大脑区域的分布式网络支持伽马相位同步。我们证明,无法对简单的 40 Hz 刺激产生一致的生理反应反映了精神分裂症患者网络功能的混乱。未来需要进行转化研究,以更全面地了解精神分裂症患者伽马波段 ASSR 网络异常的神经机制。
液相色谱-电喷雾电离-高分辨率质谱 (LC-ESI-HRMS) 法测定二甲双胍药物物质和药物产品中的亚硝胺杂质背景:二甲双胍是一种处方药,用于控制 2 型糖尿病患者的高血糖。NDMA(N-亚硝基二甲胺)被归类为 2A 类化合物,因此将其定义为“可能对人类致癌”。FDA 已将药品中 NDMA 的每日可接受摄入量限制为 96 纳克(基于 2550 毫克最大日剂量 (MDD),速释 (IR) 剂量为 0.038 ppm;基于 2000 毫克 MDD,缓释 (ER) 剂量为 0.048 ppm)。FDA 检测与研究办公室已在通过制造商商业购买或直接获得的选定药品样品中筛查了二甲双胍药物物质和药物产品中的 NDMA。已建立二甲双胍的初级 LC-HRMS 筛选并发布于此处。可以使用正交方法 LC-ESI-HRMS 确认阳性 NDMA 结果。结论:根据 ICH Q2(R1) 开发并验证了一种 LC-ESI-HRMS 方法,用于检测和定量二甲双胍药物物质和药物产品中的八种亚硝胺杂质,包括 N-亚硝基二甲胺 (NDMA)、N-亚硝基二乙胺 (NDEA)、N-乙基-N-亚硝基-2-丙胺 (NEIPA)、N-亚硝基二异丙胺 (NDIPA)、N-亚硝基二正丙胺 (NDPA)、N-亚硝基甲基苯胺 (NMPA)、N-亚硝基二正丁胺 (NDBA) 和 N-亚硝基-N-甲基-4-氨基丁酸 (NMBA)。该方法的检测限(LOD)、定量限(LOQ)和范围总结如下:
炎症、γ-氨基丁酸能 (GABAergic) 功能降低和神经可塑性改变是重度抑郁症 (MDD) 中同时发生的病理生理学。然而,这些生物学变化之间的联系仍不清楚。我们假设炎症会导致 GABAergic 中间神经元标记物缺陷,并且这种影响是由脑源性神经营养因子 (BDNF) 介导的。我们在此报告,在第一批 C57BL/6 小鼠(n = 72;10 – 11 周;50% 为雌性)中腹膜内注射脂多糖 (LPS) (0.125、0.25、0.5、1、2 mg/kg) 引起的全身炎症导致前额皮质 (PFC) 和海马 (HPC) 中的白细胞介素 1-beta 和白细胞介素-6 增加,使用酶联免疫吸附测定 (ELISA) 测量。定量实时聚合酶反应 (qPCR) 用于探索 LPS 对 GABAergic 中间神经元标志物表达的影响。在第二组 (n = 39; 10 – 11 周; 50% 为雌性) 的 PFC 中,2 mg/kg LPS 降低了生长抑素 ( Sst ) (p = 0.0014)、小白蛋白 ( Pv ) (p = 0.0257)、皮质抑素 ( Cort ) (p = 0.0003)、神经肽 Y ( Npy ) (p = 0.0033) 和胆囊收缩素 ( Cck ) (p = 0.0041) 的表达,并且不影响促皮质素释放激素 ( Crh ) 和血管活性肠肽 ( Vip ) 的表达。在 HPC 中,2 mg/kg LPS 降低了 Sst (p = 0.0543)、Cort (p = 0.0011)、Npy (p = 0.0001) 和 Cck (p < 0.0001) 的表达,但不影响 Crh 、 Pv 和 Vip 的表达。LPS 降低了 PFC (p < 0.0001) 和 HPC (p = 0.0003) 中 Bdnf 的表达,这与受影响的标志物 (Sst、Pv、Cort、Cck 和 Npy) 显着相关。总之,这些结果表明炎症可能是导致 MDD 中观察到的皮质细胞微电路 GABAergic 缺陷的因果关系。
几项研究报道了糖尿病与癫痫症的关联。关于糖尿病患者的治疗,这些研究指出了生酮饮食的有益作用。生酮饮食可能具有抗癫痫性特性,作为大脑中酮体的利用而不是葡萄糖延迟,或抑制γ-氨基丁酸(GABA)转氨酸酶的降解,从而增强了GABA的浓度。通过恢复正常的脑内GABA水平并减少与癫痫相关的脑炎症,二甲双胍可用于预防癫痫发作。西他列汀通过充当抗氧化剂并恢复正常的GABA LEV ELS对癫痫有积极影响。体重增加是抗塞氏菌药物的众所周知的副作用。丙戊酸钠可引起血脂异常,并抑制大脑中的葡萄糖转运蛋白1,使癫痫患者和糖尿病患者处于患动脉粥样硬化的风险。糖尿病和癫痫中的细胞应激会诱导自噬并激活脂质过氧化,从而导致脂吞作用。 值得研究的是,肌凋亡和自噬如何有助于糖尿病和癫痫病的病因,以及绑扎症和抗糖尿病学如何改变这些病理过程。 因此,值得对抗癫痫药对糖尿病的影响进行叙事评估,抗糖尿病对癫痫的影响以及抗癫痫症的净结果 - 抗胃糖尿病的净结果。糖尿病和癫痫中的细胞应激会诱导自噬并激活脂质过氧化,从而导致脂吞作用。值得研究的是,肌凋亡和自噬如何有助于糖尿病和癫痫病的病因,以及绑扎症和抗糖尿病学如何改变这些病理过程。因此,值得对抗癫痫药对糖尿病的影响进行叙事评估,抗糖尿病对癫痫的影响以及抗癫痫症的净结果 - 抗胃糖尿病的净结果。
在谷氨酸脱羧酶 (GAD) 抗体谱系疾病中,最常见的表型亚群是僵硬人综合征 (SPS),它是由 GABA 能抑制性神经传递受损和自身免疫引起的,其特征是 GAD 抗体滴度非常高以及 GAD-IgG 鞘内合成增加。如果不及时治疗或因诊断延迟而未治疗,SPS 会进展导致残疾;因此,从一开始就应用最佳治疗方案是至关重要的。本文重点讨论基于 SPS 病理生理学的具体治疗策略的原理,针对受损的相互 GABA 能抑制以对症改善躯干和近端肢体肌肉僵硬、步态功能障碍和发作性疼痛性肌肉痉挛的主要临床表现和自身免疫以增强改善并减缓疾病进展。提供了一种实用的、循序渐进的治疗方法,强调了联合疗法的重要性,首选的γ-氨基丁酸增强型解痉药物,如巴氯芬、替扎尼定、苯二氮卓类和加巴喷丁,可提供一线对症治疗,同时详细介绍了当前免疫疗法的应用,包括静脉注射免疫球蛋白 (IVIg) 血浆置换和利妥昔单抗。强调了不同年龄组(包括儿童、计划怀孕的妇女,尤其是考虑到合并症的老年人)的长期治疗的缺陷和问题,也强调了区分长期应用疗法的调节效果或期望与客观有意义的临床益处的挑战。最后,讨论了未来基于疾病免疫发病机制和自身免疫性兴奋过度的生物学基础的靶向免疫治疗方案的必要性,指出了未来对照临床试验设计中面临的独特挑战,特别是在量化僵硬、偶发性或惊吓引发的肌肉痉挛、任务特定性恐惧症和兴奋的程度和严重程度方面。
神经传递:神经递质、通道和转运蛋白简介 Blanton 幻灯片 1(标题幻灯片 1):下午好,您可能还记得,上一节课我讲了非甾体抗炎药,但以防万一,请允许我重新介绍一下自己,我叫 Michael Blanton,是药理学和神经科学系的教授。今天,我将对神经传递进行一般性介绍,重点介绍通道和转运蛋白的多样性、结构和功能。在接下来的一个小时里,Josh Lawrence 博士将对神经传递进行回顾,重点介绍膜电位、动作电位以及突触可塑性。我将介绍的材料在 Purves 神经科学教科书(神经科学第 5 版,Dale Purves 等人,2012 年)的第 4 章和第 6 章中介绍,事实上,我将使用的大多数幻灯片都直接来自教科书。话虽如此,您可能还记得我的 NSAID 讲座,我已经写下了我的讲稿,这应该可以在 Sakai 上找到。因此,要学习我的材料,我会先阅读神经科学教科书中的两章,然后将大部分时间集中在我的 ppt 和讲稿上。通道和转运蛋白当然是神经生理学和突触传递的关键因素,大多数中枢神经系统药物都针对这些蛋白质。但是,让我尝试通过一个例子来说明为什么我认为让您充分了解这些参与者如此重要:幻灯片 2:GABA ARA 氯离子传导配体门控离子通道:γ-氨基丁酸或 GABA 是中枢神经系统的主要抑制性神经递质,而 GABA A 受体是许多重要药物的主要靶点 - 示例 1:当我在下一个小时给您讲授全身麻醉药时,一致的看法是,全身麻醉药(丙泊酚、异氟烷、依托咪酯等)的大部分效果是通过它们对 GABA AR 的作用介导的,GABA AR 是一种氯离子传导配体门控离子通道。氯离子进入神经元的运动使膜超极化,使兴奋电流更难导致动作电位;
作为溶质载体 6 (SLC6) 蛋白家族的第一位成员,γ -氨基丁酸 (GABA) 转运蛋白 1 (GAT1, SLC6A1 ) 在 GABA 从突触间隙进入神经元和星形胶质细胞的过程中起着关键作用。此过程有助于 GABA 随后储存在突触前小泡中。人类 SLC6A1 基因极易发生错义突变,导致患者出现癫痫等严重临床后果。SLC6A1 相关疾病的分子机制已被某种程度上辨别;现在已知许多 SLC6A1 突变会损害蛋白质折叠,从而无法到达质膜。本质上,一旦进入内质网 (ER),GAT1 就会遵循一系列复杂的级联事件,从而实现有效的细胞内运输。这涉及与专门的分子伴侣结合,这些分子伴侣负责控制蛋白质折叠过程、寡聚化、通过高尔基体进行分类,并最终递送到细胞表面。整个过程在多个检查点受到严格的质量控制机制的约束。虽然大多数现有的功能丧失的 SLC6A1 变体会干扰折叠和膜靶向,但某些突变体仍保留了大量的表面表达。在这两种情况下,抑制 GAT1 活性都会破坏 GABAergic 神经传递,先于携带这些突变的个体出现疾病表现。神经系统令人着迷,需要系统的、开创性的研究努力来剖析与复杂神经系统疾病发作相关的精确分子因素,并发现更多非典型治疗靶点。最近的研究为一些错误折叠的 SLC6A1 变体带来了希望,这些变体可以通过小分子(即化学和药理学伴侣)来挽救,这些小分子作用于分泌途径中的多个上游靶点。我们在此强调药物伴侣作为治疗 SLC6A1 相关疾病的治疗策略的重要性。