摘要γ-氨基丁酸(GABA)是一种非肽氨基酸发射器,是现代神经药理学的主要组成部分,也是一般麻醉和治疗药物的最关键靶点部位之一。GABA A型受体(GABA A RS)是中枢神经系统中最丰富的抑制性神经递质受体。它们是快速作用的配体门控离子通道(LGIC)受体类别的一部分,这是一种五个五型cys-loop超家族,可介导成熟大脑中的抑制性神经传递。gaba a RS主要由两个α亚基,两个β亚基和一个来自中央氯化物(Cl-)选择性通道的d的另外一个亚基组成。已确定了多个GABA A R亚基亚型和剪接变体。GABA A R的每个变体都表现出不同的生物物理和药理特性。几种化合物会对GABA A r积极或负面调节。广泛使用的阳性GABA A R调节剂包括苯二氮卓类药物(抗焦虑和抗惊厥药),全一麻醉药(如尿素等挥发性剂,以及巴比妥类药物等静脉内药物,如抗苯甲酸酯和丙泊屈球和丙泊屈球),一些抗凝胶酒精,一些抗脉冲,抗脉冲和神经剂,并具有神经性的剂。每种药物的结合位点截然不同。麻醉药物增强了受体介导的突触传播,从而打断了丘脑皮层传播,从而控制了睡眠 - 唤醒模式。理解GABA A R为在治疗神经系统疾病和全身麻醉方面开发高度特定的药物奠定了基础。GABA A R功能的异常已与几种神经疾病有关,例如睡眠障碍,癫痫发作,抑郁,认知功能,受伤后的神经系统恢复和神经可塑性。
摘要:精神分裂症是一种病理机制复杂、受多基因影响的疾病,其发病机制研究以多巴胺假说为主,其他假说包括5-羟色胺假说、谷氨酸假说、免疫炎症假说、基因表达异常假说、神经发育异常假说等。第一代抗精神病药物是基于多巴胺受体拮抗剂发展起来的,通过阻断脑内多巴胺D2受体发挥抗精神病作用,第二代抗精神病药物通过双重阻断5-羟色胺和多巴胺受体起作用。从第三代抗精神病药物开始,抗精神病性精神分裂症的治疗靶点不再仅限于D2受体阻断,还探索D2受体部分激动以及D3、5-HT1A、5-HT7、mGlu2/3受体等新靶点的抗精神病作用。第二代和第三代抗精神病药物相对于第一代抗精神病药物的主要优势在于副作用的减少和阴性症状的改善,而且尽管第三代抗精神病药物并不直接阻断D2受体,但对多巴胺递质系统的调制仍然是其抗精神病过程的重要组成部分。根据最近的研究,包括5-羟色胺、谷氨酸、γ-氨基丁酸、乙酰胆碱受体和去甲肾上腺素在内的几种受体在精神分裂症的发展中发挥作用。因此,开发新型抗精神病药物的重点转向了这些受体的激动或抑制。具体而言,开发NMDARs激动剂、GABA受体激动剂、mGlu受体调节剂、胆碱能受体调节剂、5-HT2C受体激动剂和α-2受体调节剂成为主要方向。动物实验已证实这些药物的抗精神病作用,但其药代动力学和临床适用性仍需进一步探索。研究抗精神病药物在多巴胺D2受体以外的替代靶点,扩大了精神分裂症的潜在治疗选择,为解决难治性精神分裂症的挑战提供了重要途径。本文旨在全面概述精神分裂症治疗靶点和药物的研究,为该领域的治疗和进一步研究提供有价值的见解。关键词:精神分裂症,靶点,神经递质,抗精神病药物
药物和生化的释放和输送率的动态。在传导聚合物电极[1-4]及其构造中,[5]电子电荷和(带电的)化合物之间的耦合是控制生物分子的亲和力和扩散的多功能功能。随着电荷的积累在这些电极中的变化,掺杂静电相互作用,体积膨胀和总体形态变化,从而影响生物医学综合的摄取和释放。此外,聚电解质是有效的离子交换系统,并且已经针对被动和主动药物释放应用进行了探索,[6]以纤维的形式,[7]超薄壳[8]和球体。[9]在设备结构中,共轭聚合物与聚电解质结构结合在一起,可以实现电动控制的药物输送。有机电子离子泵[10](OEIP)就是这样的离子[11,12]药物输送装置,已反复证明适合植入疗法。OEIP使用微米尺度的选择性离子导体将带电的生物分子从源储存库到目标储层或组织。OEIP已在体内通过局部递送肝透射蛋白谷氨酸[13]在体内用于调节豚鼠的听力,以通过直接将γ-氨基丁酸递送到脊髓[14]并在大鼠中停止癫痫发作,从而抑制慢性大鼠的慢性疼痛。近年来,柔性能量收获者被认为是几种分布式和自主新兴技术的替代能源。[15]然而,需要进一步的努力来实现完全或半自主的有机药物输送设备,以实现智能决策,无线沟通和自动化。在这里,我们报告了可行性,据我们所知,首次以微毛细血管的OEIP以及压电电能收割机的形式将离子型药物输送装置结合起来,这是迈向自动且高度高度局部的生物化学治疗技术的一步。[16–21],尤其是,柔性能量收获者代表了通过周围环境或人类运动和活动的定期运动或位移来为各种类型的可穿戴和可植入设备供电的有希望的能源。[22,23]通过许多实验证明了它们的可行性和实践使用的生物相容性
下丘脑室室核(PVN)受到周围周围核区(PNZ)的γ-氨基丁酸(GABA)的强烈抑制。由于谷氨酸会介导快速兴奋性传播,并且是GABA合成的底物,因此我们测试了其动态增强GABA抑制的能力。在雄性小鼠的PVN切片中,在离子型胶质胶质受体阻滞期间应用浴谷氨酸会增加PNZ诱发的抑制性突触后电流(EIPSC),而不会影响GABA-A受体AGO,而不会影响GABA-A的抑制作用,而不会影响GABA-A的抑制作用 - 含有或单向电流或单次通道的电导率,暗示了预设机械的机械。与这种解释一致,在GABA-A受体的药理饱和过程中,浴谷氨酸无法加强IPSC。突触前分析表明,谷氨酸不影响配对脉冲比,峰值EIPSC变异性,GABA囊泡回收速度或易于释放的池(RRP)大小。值得注意的是,谷氨酸 - GABA强化(GGS)不受代谢型谷氨酸受体阻断的影响,并在标准化到基线幅度时对外部Ca 2+分级。ggs是通过泛但非胶质胶质抑制谷氨酸摄取和抑制谷氨酸脱羧酶(GAD)(GAD)预防的,这表明通过神经兴奋性氨基酸转运蛋白3(EAAT3)(EAAT3)和糖脂转化的谷氨酸转化,表明对谷氨酸摄取的依赖。EAAT3免疫反应性强烈定位于推定的PVN GABA末端。高浴K +还诱导了GGS,这是通过谷氨酸囊泡耗竭预防的,这表明突触谷氨酸释放会增强PVN GABA的抑制作用。ggs抑制了PVN细胞燃料,表明其功能性明显。总的来说,PVN GGS通过与突触释放的谷氨酸合成的GABA合成的囊泡的明显“过度填充”来缓冲神经元激发。我们认为GGS可以防止持续的PVN激发和兴奋性毒性,同时有可能有助于应激适应和习惯。
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。
气候因子和根际微生物群的变化导致植物在不利的环境条件下调整其代谢策略以生存。植物代谢产物的变化可以介导农作物的生长和发育,并与植物根际的根际微生物相互作用。了解环境因素,根际菌群和烟草代谢产物之间的相互作用,是通过在中国尤恩南的四个典型代表性烟草种植地点使用综合的元基因组和代谢组策略进行了一项研究。结果表明,农艺和生化特征受到温度,降水(PREP),土壤pH和高度的显着影响。相关分析显示,温度与叶片的长度,宽度和面积有显着的正相关性,而PREP与植物高度和有效的叶子数相关。此外,烘焙叶的总糖和还原的糖含量明显更高,而在现场烟叶中,总氮和总生物碱水平较低,而Prep较低。与其他三个地点相比,在Chuxiong(CX)的不同丰富的代谢物(DMS)中,总共770个代谢产物被检测到,其中二次代谢物在两种叶子和根中都更丰富。共有8479种,属于2,094个属,有420个单独的垃圾箱(包括13个高质量的垃圾箱),它们被检测到851,209个CDSS。微生物的门水平,例如euryarchaeota,粘菌球和脱氧核糖核,在CX部位显着富集,而假胞植物在高温位点富集了良好的prep。相关分析表明,低prep位点样品中的代谢化合物与二氨基丁酸,nissabacter,nissabacter,alloactinosynnema和catellatospora和catellatospora和catellatospora呈正相关,并与niculibibacterium,Noviherbasterium,Noviherbasuspirillim和Limnobrim s himnicibrim and Novibasterium s himnicibrim seriaterts re招募。根际诱导的二氨基丁基菌,尼萨拉克菌,同骨促和catellatospora
缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
抽象的大型噬菌/自噬是一种进化保守的途径,负责清除胞质聚集蛋白,细胞器受损或入侵的微生物。功能失调的自噬导致货物的病理积累,这与一系列人类疾病有关,包括神经退行性疾病,传染性和自身免疫性疾病以及各种形式的癌症。在动物模型中的累积工作,遗传工具的应用和药物活性化合物,提出了自噬调节中疾病中的潜在治疗价值,例如亨廷顿,沙门氏菌感染或胰腺癌。正在探索自噬激活与抑制策略,而自噬在病理生理学中的作用并行研究。然而,自噬调节剂的临床前和临床发展的进展受到选择性药理学剂和生物标志物的缺乏,从而揭示了其对各种形式的自噬和细胞反应的精确影响。在这里,我们总结了自噬相关药物发现中已建立的新策略,并指出了建立更有效发现自噬选择性药物基因剂的途径。有了这些知识,对自动phagy的治疗性开发的现代概念可能会变得更加合理。缩写:ALS:肌萎缩性侧硬化; AMPK:AMP激活的蛋白激酶; ATG:自动phagy相关基因; Autac:靶向自噬的嵌合体;中枢神经系统:中枢神经系统; CQ:Chlor Oquine; GABARAP:Aγ-氨基丁酸A型受体相关蛋白; HCQ:羟氯喹; Lytac:溶酶体靶向嵌合体; MAP1LC3/LC3:微管相关蛋白1轻型链3; MTOR:雷帕霉素激酶的机械靶标; NDD:神经退行性疾病; PDAC:胰腺导管腺癌; PE:磷脂酰乙醇胺; PIK3C3/VPS34:磷脂酰肌醇3-激酶催化亚基3型; PTDINS3K:III类磷脂酰肌醇3-激酶; PTDINS3P:3-磷酸磷脂酰肌醇; protac:靶向蛋白水解嵌合体; SARS-COV-2:严重的急性呼吸综合征冠状病毒2; SQSTM1/p62:隔离1; ULK1:UNC-51喜欢自噬激活激酶1。
抽象目标:2型糖尿病(T2DM)是一种与氧化应激,炎症增加,能量代谢改变和神经系统异常相关的慢性代谢疾病。因此,本研究旨在阐明糖尿病中的一些神经系统歧义。通过考虑miRNA在生物学过程中的主要调节作用,我们评估了一些神经活性miRNA(miR-125a,let-7 miRNA,miRNA,miR-181c,miR-504,miR-16)和神经酮,例如γ-氨基丁酸(GABA),血清素蛋白和多帕宁患者和T2D2DMMATEN。方法:对30名T2DM患者和30个非糖尿病对照进行了这项研究。通过血清样品中的特定ELISA试剂盒确定GABA,5-羟色胺,多巴胺和生化参数的水平。另外,通过实时定量聚合酶链反应(RT-QPCR)分析评估miRNA的相对含量。结果:获得的结果表明,多巴胺和5-羟色胺在高血糖疾病的情况下增加可能是由于miR-181c和miR-125a的上调以及miR-16的下调。MiRNA网络中提到的变化也可以被视为胰岛素抵抗的原因(IR)。减少的miR-16含量可能导致糖尿病中观察到的葡萄糖摄取减少。 圆形GABA浓度也降低,这也可以被视为IR的原因和葡萄糖摄取减少的原因。 GABA是一种兴奋性神经递质,其还原可能是与痴呆相关疾病的可能原因。 结论:这项研究揭示了所检查的miRNA在T2DM中在氧化应激,炎症和IR中起着至关重要的作用,并且具有治疗潜力。减少的miR-16含量可能导致糖尿病中观察到的葡萄糖摄取减少。圆形GABA浓度也降低,这也可以被视为IR的原因和葡萄糖摄取减少的原因。GABA是一种兴奋性神经递质,其还原可能是与痴呆相关疾病的可能原因。结论:这项研究揭示了所检查的miRNA在T2DM中在氧化应激,炎症和IR中起着至关重要的作用,并且具有治疗潜力。基于糖尿病的神经内分泌异常,外源激素可以视为控制代谢率并降低T2DM中神经系统副作用的治疗剂。
迟发性运动障碍(TD)的特征在于涉及面部,口腔和舌头的节奏,重复性,刻板印象运动的阴险发作,经常由于多巴胺受体阻滞剂(DRBA)(例如抗精神病药和抗精神病药物)(例如抗精神病药和抗精神病药)而延伸到躯干和四肢。尚不清楚TD的确切机制,但是次要上调和D2多巴胺受体的敏感性增加,也称为多巴胺超敏假说,可能在其病理生理学中起作用[2]。然而,这可能不是TD的专有原因,其他贡献者包括对基本神经节中γ氨基丁酸(GABA)效应神经元的损害,[3]纹状体中神经元因氧化应激而导致的氧化应激导致的氧化应激导致延长的抗精神病药物和抗抗抑制性型型型肌的氧化应激,并产生的神经元互为神经元。输出导致电机程序错误编码[4]。第二代抗精神病药(SGA)的终生暴露率为13.1%,第一代抗精神病药(FGAS)为32.4%[5]。此外,大约有20%至35%的人被处方抗精神病药,至少三个月遇到TD [6]。TD症状可以显着影响患者的生活质量,并导致严重病例的严重身体残疾[7]。随着SGA的扩展使用用于额外标签和标签外迹象,即使使用更少的FGA处方,TD的趋势也可能继续上升[5]。然而,这种方法可能会使潜在的精神症状恶化或反而恶化的运动障碍[8]。尽管药物开发方面取得了进步,但TD仍然是一个具有挑战性的临床问题,需要评估停止或减少违规药物剂量的选择。囊泡单胺转运蛋白2(VMAT2)主要位于神经元中,在储存单胺,例如多巴胺,5-羟色胺,去甲肾上腺素和组胺等单胺中,在突触前裂口中的囊泡中发挥作用。当抑制VMAT2时,可以防止单胺的释放,并导致可与突触后受体结合的多巴胺量减少[9]。多巴胺在其他神经途径中也起着至关重要的作用。阻塞运动回路中的多巴胺会导致突触后多巴胺受体的过敏性和多巴胺能信号的增加,从而导致与TD相关的异常运动[10]。VMAT2抑制剂,例如丙苯嗪(VBZ)和脱甲苯甲嗪(DTBZ),是迟发性运动障碍的最新颖的疗法[11-15],已得到食品和药物管理的批准[16,17]。在这里,我们对使用异常非自愿性