Anna Paola Carrieri *1、Niina Haiminen 2、Sean Maudsley-Barton 1,8、Laura-Jayne Gardiner 1、Barry Murphy 3、Andrew Mayes 4、Sarah Paterson 3、Sally Grimshaw 3、Martyn Winn 5、Cameron Shand 1,9、Will Rowe 6、Stacy Hawkins 7、Ashley MacGuire-Flanagan 7、Jane Tazzioli 7、John Kenny 8、Laxmi Parida 9、Michael Hoptroff 10、Edward O. Pyzer-Knapp 10 1 IBM Research,Sci-Tech Daresbury,Daresbury,WA4 4AD(英国) 2 IBM Research,T.J.沃森研究中心,纽约州约克敦高地,邮编 10598(美国) 3 联合利华研究与开发中心,Port Sunlight,邮编 CH63 3JW(英国) 4 联合利华研究与开发中心,Sharnbrook,英国,邮编 MK44 1LQ 5 STFC Daresbury 实验室,科学计算系,Daresbury,WA4 4AD(英国) 6 伯明翰大学,英国 7 联合利华研究与开发中心,康涅狄格州特朗布尔,邮编 06611(美国) 8 利物浦大学,综合生物学研究所,生物科学大楼,利物浦,邮编 L697ZB(英国) 9 曼彻斯特城市大学 (MUU),计算与数学系,邮编 M15 6BH,曼彻斯特 10 曼彻斯特大学 (UoM),计算机科学系,邮编 M13 9LP,曼彻斯特 * 联系方式:acarrieri@uk.ibm.com 关键词:皮肤微生物组、微生物签名,可解释的人工智能
Anna Paola Carrieri *1、Niina Haiminen 2、Sean Maudsley-Barton 1,9、Laura-Jayne Gardiner 1、Barry Murphy 3、Andrew Mayes 4、Sarah Paterson 3、Sally Grimshaw 3、Martyn Winn 5、Cameron Shand 1,10、Will Rowe 5,6、Stacy Hawkins 7、Ashley MacGuire-Flanagan 7、Jane Tazzioli 7、John Kenny 8、Laxmi Parida 2、Michael Hoptroff 3、Edward O. Pyzer-Knapp 1 1 IBM Research,Sci-Tech Daresbury,Daresbury,WA4 4AD(英国) 2 IBM Research,TJ Watson 研究中心,Yorktown Heights,NY,10598(美国) 3 联合利华研究与开发中心,Port Sunlight,CH63 3JW(英国) 4 联合利华研究与开发中心,Sharnbrook,英国,MK44 1LQ 5 STFC Daresbury 实验室,科学计算系,Daresbury,WA4 4AD(英国) 6 伯明翰大学,英国 7 联合利华研究与开发中心,Trumbull,CT,06611(美国) 8 利物浦大学,综合生物学研究所,生物科学大楼,利物浦,L697ZB(英国) 9 曼彻斯特城市大学(MUU),计算与数学系,M15 6BH,曼彻斯特 10 曼彻斯特大学(UoM),计算机科学系,M13 9LP,曼彻斯特 * 通信地址应为 acarrieri@uk.ibm.com 关键词:皮肤微生物组、微生物特征、可解释的人工智能
摘要。微生物从土壤到大气的微生物释放,反映了环境条件如何影响土壤有机物(SOM)的性能,尤其是在大量有机的生态系统中,如Qinghai – Tibetan Plateau(QTP)等大型有机物生态系统。放射性碳(14 C)是全球碳循环的重要示踪剂,可用于通过估计碳固定和呼吸之间的时间滞后来理解SOM动力学,通常通过年龄和过境时间等指标进行评估。在这项研究中,我们在四个温度(5、10、15和20°C)和两个水上填充的孔隙空间(WFPS)水平(60%和95%)下融化了泥炭地和草原土壤,并测量了散装土壤和异育呼吸的14 C标志。我们比较了批量土壤的14 c与呼吸碳的1 14 CO 2之间的关系,这是两种土壤的温度和WFP的函数。为了更好地解释我们的结果,我们使用了数学模型来分析计算的池数字,碳(K)的分解速率,转移(α)和分配(γ)系数如何影响1 14 c组和1 14 CO 2的关系,以及各自的平均年龄和平均年龄和平均年龄和平均值交通时间。从我们的孵化中,我们发现散装中的14个c谷物和来自泥炭地的Co 2比草原土壤的耗尽(旧)要大得多(古老)。我们的结果表明,温度的变化不会影响两种土壤中异养的呼吸CO 2的1 14 c瓣膜。然而,WFP的变化对基层土壤中的14个CO 2的影响很小,并且在泥炭地土壤中具有显着影响,在泥炭地土壤中,较高的wfps水平导致较高的水平导致1 14 CO 2的枯竭。在我们的
◎NXP Ucode8 品牌识别器 NXP 独有品牌 ID ◎NXP UCODE DNA 128 位 AES 密钥,用于 IC 芯片中的加密认证 ◎带有水分检测 IC 芯片的 Axzon Magnus ® S2 标签 ◎CSL CS9010 BAP 长距离可读半无源标签 ◎带有外部传感器(电容式感应)连接的 EM 微电子 Aura-sense 标签
a。 LP®Smartside®圈侧壁板将自然膨胀,因为其水分水平与周围环境的安装后保持平衡。在所有垂直接头上提供3/16英寸(5毫米)的间隙,可确保为任何可能的线性扩展提供必要的空间。b。当壁板离开磨坊时,其水分含量小于5%。c。安装后,壁板需要适应安装的地理位置中的水分含量。d。全国各地的平衡水分含量各不相同,可能是壁板离开磨坊时的水分含量的很多倍。壁板达到水分水平平衡的过程与局部环境条件导致圈壁板的长度略有增加。e。一旦达到平衡的壁板的水分含量会有所不同,但范围高达9%至14%。
这个问题越来越受到关注,尤其是在运动服,运动服和工作服领域。[1,2]水分管理纺织品是指具有单向运输特性的服装,使水分可以从佩戴者的身体中运输出来。[3,4]人们倾向于在许多条件下大量出汗或发汗,例如,在潮湿而热门的环境中,或者处于强化运动状态。在这种情况下,出汗遵循人体,效率低下的水分传输不仅会影响热生理舒适性,而且会导致不适和可能的皮肤状况。[5,6]因此,必须具有出色的方向性水分运输能力的材料来保持佩戴者的固定瓷砖和表演。[7,8]在这方面,水分芯技术已被用作有前途的方法之一。水分芯的效率取决于几个参数,这些参数是结构性设计,底物的表面作用,孔的微结构和毛细管力(FCF)。[9]正在采用各种技术,包括由表面改性的羟化型超细纤维组成的单个分层纺织品。[10]这种纺织品通常是从聚酯和聚丙烯中脱离的,这些纺纱表现出高水分释放和低水分携带。这款单层微纤维纺织品需要轻微的精加工,以增强其水分传输能力。Janus纺织品是指每侧具有不对称特性的纺织品。[11,12]芯吸技术的另一种应用方法是利用卫星微纤维,Coolmax Fiber旨在改善所得纺织品的水分传输性能。[13]它显示出相当大的水分传输能力,但是,这种单层纺织品无法保留液体并阻止其沿反向方向越过纺织品,也就是说,这是双向液体液体水分传输纺织品。他们吸引了越来越多的注意力,他们对水分管理的潜在收益。由于每一层的独立剪裁和设计,这种纺织品具有更有效的液体水分传输性能。在我们的工作背景下,可以通过两种主要策略来制造具有方向性水分传输能力的Janus材料:1)通过将它们涂在布上[14-18]和2)形成疏水性 - 氢化性
生物塑料的水分含量是指生产过程后的生物塑料的质量百分比。随着使用增塑剂的使用而增加了水分含量。来自图3,为合成的最大甘油添加最大甘油的生物塑料的水分含量最高(49%),并且添加氯仿百分比最高的生物塑料具有最低的水分含量(30%)。当两者之间的比率为1:1时,中间的水分含量位于中间。先前的研究中,香蕉皮被用于制作基于淀粉的生物聚合物(4)表明,基于甘油的生物塑料具有较高的水分含量值。这是因为甘油是羟基的一部分,该羟基很容易与水分子形成氢键,并且对它们具有很大的亲和力。
377 Williamson Hall;办公时间:通过预约:Annemarie Mueller(amueller1@ufl.edu)讲座:M,W,F,时期9,4:05 - 4:55 PM,佛罗里达体育馆(FLG)265目标:海洋商店和供电的热量,水分和水分,水分,水分,水分和二氧化碳。 因此,它们会深刻影响气候,并调节自然和人为气候变化。 本课程的目的是让您了解海洋在确定气候和调节全球气候变化中的作用。 我们将从气候系统的介绍开始,然后涵盖大气和海洋循环,海洋与全球碳系统之间的关系,最后讨论当前短期全球变化的记录以及在海洋中保留的全球气候的长期记录。 在课程结束时,您应该了解:377 Williamson Hall;办公时间:通过预约:Annemarie Mueller(amueller1@ufl.edu)讲座:M,W,F,时期9,4:05 - 4:55 PM,佛罗里达体育馆(FLG)265目标:海洋商店和供电的热量,水分和水分,水分,水分,水分和二氧化碳。因此,它们会深刻影响气候,并调节自然和人为气候变化。本课程的目的是让您了解海洋在确定气候和调节全球气候变化中的作用。我们将从气候系统的介绍开始,然后涵盖大气和海洋循环,海洋与全球碳系统之间的关系,最后讨论当前短期全球变化的记录以及在海洋中保留的全球气候的长期记录。在课程结束时,您应该了解:
Entegris 的突破指示器 (BTI) 提供了一种准确的方法来确定您的 GateKeeper ® GPU 气体净化器何时不再去除水分杂质。此水分传感器安装在气体净化器后,当水分杂质接触传感器时,它会通知您。当发生突破时,就该联系 Entegris 并将净化器送回进行再生。气体净化器的再生可让您最大限度地提高净化器投资回报。结果是以最低的拥有成本进行净化。BTI 可有效测量气流中的水分。水分是几乎所有应用中的问题污染物,使其成为理想的测量污染物。水分也是最先饱和净化器的污染物之一,因为它通常含量最高。
这些测试是通过钻孔取砂浆或砖石样品并将砂浆收集到可密封的容器或袋子中进行的。称量样品,然后干燥一段时间,直到不再检测到重量损失。重新称量样品并计算百分比水分含量(BRE Digest 245)。还可以通过将干燥样品置于 75% RH 中 12 小时然后重新称量来确定吸湿盐的含量。知道总水分含量和吸湿水分含量后,可以计算自由水分含量(由于水渗透而产生的水分)。