摘要 将 mRNA-LNP 有效递送至特定细胞类型仍然是 mRNA 疗法广泛应用过程中面临的主要挑战。传统的靶向方法包括修改脂质组成或对脂质纳米颗粒 (LNP) 的表面进行功能化,这会使制造变得复杂,改变纳米颗粒的大小、电荷和隐身性,影响其递送和免疫原性。在这里,我们提出了一种通用的靶向 mRNA-LNP 递送方法,该方法使用双特异性抗体 (BsAbs) 在 LNP 和细胞表面标志物之间建立桥梁。不是将靶向剂附着到纳米载体上,而是先施用 BsAbs,与靶细胞上的表面蛋白结合,然后将未修饰的 LNP 保留在受影响的组织中。我们证明了在体外和体内将 mRNA-LNP 有效且细胞类型特异性地递送至表皮生长因子受体 (EGFR) 和叶酸水解酶 1 (PSMA) 阳性细胞。该技术的灵活性是通过替换 BsAbs 的细胞靶向区域实现的,从而使得下一代靶向 mRNA 药物能够快速开发。
植物半胱氨酸 - 蛋白酶(Cysprot)代表一种良好的蛋白水解酶类型,该酶履行严格调节的生理功能(衰老和种子发芽等)和防御作用。本文集中于帕帕因 - 蛋白酶蛋白酶C1a(Family C1,CA氏族)及其抑制剂植物囊蛋白(Phycys)。尤其是,审查了蛋白酶抑制剂的相互作用及其在整个植物一生中的特定途径的相互参与。c1a cysprot和phycys已被分子表征,比较序列分析已鉴定出共有的功能基序。可以在被子植物中已识别的Cysprot和Phycys数量之间建立相关性。因此,进化力可能已经确定了囊蛋白在这些物种中内源性和害虫性蛋白酶上的控制作用。用荧光蛋白标记蛋白酶和抑制剂揭示了在瞬时转化的洋葱表皮细胞中内质网网络中亚细胞定位的常见模式。通过双分子荧光互补证明了进一步的体内相互作用,这表明它们参与了相同的生理过程。
摘要:巨自噬(本文简称自噬)是一种复杂的分解代谢过程,其特征是形成称为自噬体的双膜囊泡。在此过程中,自噬体吞噬并将其细胞内内容物运送到溶酶体,在那里被水解酶降解。因此,自噬为维持细胞稳态提供能量和构建块,并代表一种动态循环机制。重要的是,正常细胞中自噬清除受损细胞器和聚集分子有助于预防癌症。因此,自噬功能障碍对细胞命运有重大影响,并可导致肿瘤发生。乳腺癌是全球女性中最常见的癌症,并且在所有女性癌症中死亡率最高。乳腺癌患者通常短期预后良好,但长期幸存者常常会出现复发。这种现象可能是由于乳腺癌肿瘤的高度异质性导致乳腺肿瘤难以靶向。本综述重点介绍乳腺癌发生过程中的自噬机制,并阐明自噬在侵袭性乳腺癌细胞特征(如迁移、侵袭和治疗耐药性)中的作用。
细胞培养的最新进展显着影响了各种领域,包括药物发现和再生医学。因此,越来越需要最大程度地减少细胞培养过程中涉及的污染风险和劳动力。传统的细胞脱离方法通常采用蛋白水解酶,然后采取离心酶以在细胞脱离后去除这些酶。此过程通常需要大量的手动干预,这可能导致细胞质量的潜在污染和恶化。在这项研究中,我们提出了一种新型的细胞脱离方法,即使在胰蛋白酶化时间较少的情况下,也消除了离心的需求。我们的方法涉及减少胰蛋白胰蛋白酶的持续时间,在完整细胞脱落之前收集胰蛋白酶,然后在培养基中使用强制振动脱离细胞。我们进行了实验以优化酶处理时间和振动条件。我们的结果表明,该方法达到了从培养表面的82.8%的细胞脱离率。这些发现表明所提出的细胞脱离技术可有效从培养基底物中去除细胞和以下亚培养过程,而无需离心。
大规模的染色体畸变在人类癌症中普遍存在,但其功能仍然很差。我们使用CRISPR-CAS9基因组编辑建立了染色体工程的肝细胞癌细胞系。A 33 - Mega - 8p染色体(CHR8P)上的碱基对区域被删除,模仿了一个经常观察到的染色体缺失。使用此等源性模型系统,我们描述了CHR8P损失的功能序列及其对转移行为和患者生存的影响。我们发现,CHR8P的转移基因协同起作用,以诱导CHR8P骨骼肿瘤的侵略性和侵入性表型的特征。全基因组CRISPR-CAS9在等源性CHR8P删除细胞中的可行性筛选是一种强大的工具,可以找到先前未识别的合成致死靶标和伴随患者特异性染色体改变的脆弱性。使用此目标识别策略,我们表明CHR8P的de依将肿瘤细胞敏感到靶向反应性氧消毒酶Nudix水解酶17。因此,综合工程允许鉴定新型的合成致死性,特异性杂志的杂合性丧失。
体细胞基因组编辑的临床应用需要可以推广到广泛患者的疗法。tar-插入无启动子转基因的插入可以确保编辑是永久且广泛适用的,同时最大程度地降低了脱靶集成的风险。在肝脏中,白蛋白(ALB)基因座是目前唯一用于无启动子插入式插入的特征良好的位点。在这里,我们针对ApoA1基因座,其腺体呈现病毒(AAV)的CRISPR-CAS9递送(AAV),并达到靶向肝细胞的6%至16%的速率,没有毒性的证据。我们进一步表明,内源性apoA1启动子可以驱动治疗蛋白(例如载脂蛋白E(APOE))的稳健和持续表达,在高胆固醇血症模型中大大降低了血浆脂质。最后,我们证明了由ApoA1靶向的富马乙酸乙酸乙酸苯胺其乙酸酯水解酶(FAH)可以纠正和挽救严重的代谢性肝病遗传性酪氨酸。总而言之,我们将APOA1识别为一个新型整合位点,该位点支持基因治疗应用中肝脏中持久的转基因表达。
维管植物病原体通过宿主静脉长距离传播,导致危及生命的全身性感染。相反,非维管病原体仍然局限于感染部位,引发局部症状发展。维管疾病和非维管疾病的对比特征表明病因不同,但每种疾病的基础仍不清楚。在这里,我们表明水解酶 CbsA 充当维管植物和非维管植物致病机制之间的表型转换。cbsA 在黄单胞菌科的维管植物病原菌基因组中富集,而在大多数非维管物种中不存在。CbsA 表达使非维管黄单胞菌引起维管病,而 cbsA 诱变导致维管病减少或非维管病症状发展增强。系统发育假设检验进一步表明,cbsA 在多个非维管谱系中丢失,最近被一些维管亚群获得,这表明维管病是祖先的。我们的研究结果总体证明了单个基因座的获得和丢失如何促进复杂生态特征的进化。
在过去的50年中,研究导致了有效的基于肽的大分子的发展,但尽管患者偏爱,但仍只能口服4%的人。口服肽的递送是由于蛋白水解酶降解和低胃渗透性而具有挑战性的。 与渗透增强剂(PES)共同制造提供了一种有希望的策略来克服这些障碍并改善口服生物利用度。 This study evaluates the efficacy and safety of 4 PEs - in 2 different concentrations - on the permeability of salmon calcitonin (sCT) in Caco-2 cell lines: S-nitroso-N-acetyl-DL-penicillamine (SNAP), sodium taurodeoxycholate (TDC), dimethyl-palmitoyl-ammonio-propane-sulfonate (PPS) and四烷基麦芽剂(TDM)。 在测试的PES中,TDM 0.2 mg/ml显着提高了SCT渗透率,增加了282%的速度(P = 0.017),240%对SNAP 0.002 mg/ml(p = 0.01)和149%vers tdc 0.1 mg/ml(p = 0.036)。 所有PE都显着降低了细胞系与对照的旋转电阻(TEER),并且在前15分钟内观察到了最强的影响。 tdm 1 mg/ml引起最显着的TEER降低,其次是PPS 0.2 mg/ml和TDC 0.25 mg/ml。 teer值在60分钟时最低,在两个小时时注明了部分恢复,表明潜在的可逆性。 这些发现可以指导未来的研究,以选择与具有相似分子特征的SCT或其他肽共建立的最佳PE。 rezumat口服肽的递送是由于蛋白水解酶降解和低胃渗透性而具有挑战性的。与渗透增强剂(PES)共同制造提供了一种有希望的策略来克服这些障碍并改善口服生物利用度。This study evaluates the efficacy and safety of 4 PEs - in 2 different concentrations - on the permeability of salmon calcitonin (sCT) in Caco-2 cell lines: S-nitroso-N-acetyl-DL-penicillamine (SNAP), sodium taurodeoxycholate (TDC), dimethyl-palmitoyl-ammonio-propane-sulfonate (PPS) and四烷基麦芽剂(TDM)。在测试的PES中,TDM 0.2 mg/ml显着提高了SCT渗透率,增加了282%的速度(P = 0.017),240%对SNAP 0.002 mg/ml(p = 0.01)和149%vers tdc 0.1 mg/ml(p = 0.036)。所有PE都显着降低了细胞系与对照的旋转电阻(TEER),并且在前15分钟内观察到了最强的影响。tdm 1 mg/ml引起最显着的TEER降低,其次是PPS 0.2 mg/ml和TDC 0.25 mg/ml。teer值在60分钟时最低,在两个小时时注明了部分恢复,表明潜在的可逆性。这些发现可以指导未来的研究,以选择与具有相似分子特征的SCT或其他肽共建立的最佳PE。rezumat
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
2型糖尿病(T2DM)会对许多系统和组织造成损害,例如自主神经,骨膜神经,微血管和微血管,从而导致多种糖尿病并发症,并严重递增患者的生活和健康。T2DM视网膜病(DR)是T2DM患者中最常见的微血管并发症之一,也是30至70岁患者失明的第一个原因。因此,如何预防和治疗DR已成为临床糖尿病杂志的重点。目前尚未充分解释DR的发病机理,但作为慢性炎症性免疫疾病,视网膜微血管炎症性疾病,信息和免疫异常是影响DR的重要致病因素。基质金属蛋白酶-2(MMP-2)是一种蛋白水解酶,可以通过调节细胞外基质的产生和降解,然后参与T2DM血管疾病的进展(1)来参与微血管结构的破坏(1)。组织抑制剂1(TIMP-1)是MMP-2的特定INHI BITOR,可以调节MMP-2(2)的生物学活性。此外,β2-微球蛋白(β2-mg)是由血小板,多形核白细胞和淋巴细胞形成的微小蛋白。最近的研究表明,糖尿病性肾病患者的血清β2-mg与微血管病密切相关。高度敏感的C-