引言 1 2 癌细胞的细胞代谢上调,以支持肿瘤的生长和转移。癌症代谢的一个关键部分是一碳 (1C) 叶酸循环,它支持维持快速增殖所需的核苷酸和氨基酸合成。针对一碳代谢进行癌症治疗的历史可以追溯到 1948 年,当时 Sydney Farber 使用抗叶酸药物治疗白血病 (1)。早期的抗叶酸化疗药物,如甲氨蝶呤,至今仍是有效的癌症治疗方法,但副作用很常见,而且可能很严重 (2,3)。8 9 亚甲基四氢叶酸脱氢酶/环化水解酶 2 (MTHFD2) 作为癌症靶点,一直备受关注,自 2012 年 Jain 及其同事证明 MTHFD2 是癌症中过表达最高的代谢酶之一 (4) 以来,该研究一直备受关注。 Nilsson 等人的荟萃分析证实了这一观点,他们发现 MTHFD2 在 16 种癌症类型中上调 (5)。这 13 促使大量研究表明 MTHFD2 敲低会抑制癌症生长,更重要的是,14 开发出针对 MTHFD2 表达癌症的抑制剂,这些抑制剂在小鼠 15 模型中有效 (6-8)。16
摘要:从阿根廷 Hombre Muerto 盐沼的土壤和水溶液样本中分离出细菌菌株。共对 141 株菌株进行了表征,并评估了其对氯化钠的耐受性。我们进行了筛选,以寻找具有生物技术意义的分子:类胡萝卜素(11%)、乳化剂(95%)和胞外多糖(6%),并评估了酶的产生,包括蛋白水解酶(39%)、脂肪分解酶(26%)、溶血酶(50%)和过氧化氢酶活性(99%);选择了 25 种细菌菌株进行进一步研究。其中一些菌株产生了生物膜,但只有芽孢杆菌属 HA120b 在所有测定条件下都表现出这种能力。虽然 21 株菌株能够形成乳液,但乳化指数 Kocuria sp. M9 和芽孢杆菌属。 V3a 培养物大于 50%,当细菌在较高盐浓度下生长时,乳液更稳定。只有有色的 Kocuria sp. M9 在橄榄油培养基上表现出脂肪分解活性,并且在没有和有 4 M NaCl 的情况下培养时能够产生生物膜。在 Micrococcus sp. SX120 中观察到黄色色素、脂肪酶活性和生物表面活性剂的产生。总之,我们发现所选细菌产生了具有多种工业应用的非常有趣的分子,其中许多在高盐浓度下发挥作用。
α-葡萄糖苷酶(EC 3.2.1.20)是一种碳水化合物水解酶,广泛分布于小肠黏膜刷状缘,对糖基结构有重要影响。它能以内切或外切的方式水解各种糖化合物中的糖苷键,产生单糖、寡糖或糖胺聚糖,导致餐后血糖升高(Daub et al., 2020; Ismail et al., 2020; Attjioui et al., 2020)。餐后高血糖是导致2型糖尿病发生、发展的主要危险因素。抑制α-葡萄糖苷酶活性可减慢碳水化合物的消化,从而减少葡萄糖吸收入血,控制血糖水平。这种抑制被认为是治疗非胰岛素依赖型糖尿病的重要临床验证靶点(Ye et al., 2019; Khan et al., 2019; Syabana et al., 2021)。目前常用的α-葡萄糖苷酶抑制剂为阿卡波糖、伏格列波糖等生物合成或半生物合成药物,这些药物价格昂贵,且有不同程度的不良副作用(主要为腹部不适、恶心、呕吐等胃肠道反应(Wehmeier & Piepersberg, 2004; Smith et al., 2021)。需要开发安全、有效、具有临床获益的新型α-葡萄糖苷酶抑制剂。
几个世纪以来,植物大麻Sativa已用于药物和娱乐目的。它含有500多种化合物,其中大约100种属于大麻素类(1)。在1960年代,分离并表征了主要的精神活性成分( - ) - trans -9-二氢大麻酚(THC)(THC)(2)。在确定THC结构后三十年(3,4)确定了大麻素1(CB 1)和2(CB 2)受体,即THC发挥其特征作用的分子实体。这一发现开始寻找与这些受体结合的内源配体(所谓的内源性大麻素)。n-氨基苯二烯丙基氨基胺(Anandamide或AEA)被发现为第一个内源性大麻素,不久后是2-芳基二烯丙基甘油(2-ag)(5,6),促使他们研究了它们的生物合成,新陈代谢,运输和生理学角色(7)。一起,CB 1/2受体,内源性大麻含量以及负责其生物合成和失活的蛋白质构成内源性大麻素系统(ECS)。在这里,我们简要讨论了医用大麻的潜在治疗和不利影响,并审查了基于对EC的调节而考虑的潜在替代策略,重点是针对靶向脂肪酸酰胺水解酶(FAAH)和单酰甘油甘油脂肪酶(MAGL)的实验药物,酶,酶,无活性内替代(8)(8)(8)。
摘要:Aspergillus是一种蛋白质真菌属,在自然界中广泛分布,在有机材料的分解中起着至关重要的作用,作为重要的环境微生物以及传统的发酵和食品加工行业。此外,由于它们强大的潜力通过操纵基因表达和/或引入新的生物合成途径来分泌多种水解酶和其他天然产物,因此,几种曲霉物种已被广泛利用为微生物细胞工厂。近年来,随着下一代基因组测序技术和基因工程方法的发展,已经很好地研究了曲霉物种中各种同型/异源 - 蛋白质和天然产物的生产和利用。作为一种新开发的基因组编辑技术,已使用定期插入的短期短质体重复序列/CRISPR相关蛋白9(CRISPR/CAS9)系统用于编辑和修改Aspergilli中的基因。到目前为止,基于CRISPR/CAS9的方法已被广泛采用,以提高基因修饰的效率,在菌株类型的Aspergillus nidulans和其他工业重要和致病性的曲霉物种中,包括Aspergillus oryzae,aspergillus oryzae,spergillus niger niger和aspergillus fumigatus fumigatus。本评论重点介绍了基于CRISPR/CAS9的基因组编辑技术的当前发展及其在曲霉物种中的基础研究以及重组蛋白和天然产物的生产中的应用。
目前正在研究以聚(ADP-核糖)糖基水解酶 (PARG) 为靶点治疗各种癌症,但我们对导致癌细胞易受这种定制疗法影响的特定遗传弱点了解甚少。此外,识别此类弱点对于靶向 BRCA2;p53 缺陷型肿瘤很有意义,这些肿瘤通过 PARG 表达丧失而获得对聚(ADP-核糖)聚合酶抑制剂 (PARPi) 的耐药性。在这里,通过进行全基因组 CRISPR/Cas9 缺失筛选,我们识别出参与 DNA 修复的各种基因,这些基因对于 PARG;BRCA2;p53 缺陷型细胞的存活至关重要。特别是,我们的研究结果揭示了 EXO1 和 FEN1 是 PARG 缺失的主要合成致死相互作用因子。我们提供了证据表明,在 PARG;BRCA2;p53 缺陷细胞中,复制叉进展、DNA 单链断裂修复和冈崎片段处理受损,这些改变加剧了 EXO1/FEN1 抑制的效果,并在这种情况下变得致命。由于这种敏感性取决于 BRCA2 缺陷,我们建议在失去 PARG 活性的 PARPi 抗性肿瘤中靶向 EXO1/FEN1。此外,EXO1/FEN1 靶向可能是增强 PARG 抑制剂在同源重组缺陷肿瘤中效果的有效策略。
汽油范围碳氢化合物 (GRH) 有两种:汽油范围 GRH 和柴油范围 GRH。DRH (PHC) 包括多环芳烃和长链烷烃等。GRH 包括甲苯、苯、二甲苯和乙苯等碳氢化合物 [3]。糖苷水解酶(称为木聚糖酶 (EC 3.2.1.x))可催化木聚糖中 1,4-D-木糖苷键的内水解。包括细菌、藻类、真菌、原生动物、腹足类和人足类在内的多种生物都会产生这种普遍存在的酶组,这些酶参与木糖的形成(木糖是细胞代谢的关键碳源)以及植物病原体对植物细胞的感染 [4]。木聚糖是自然界中第二常见的多糖,是植物细胞的主要结构成分,约占整个地球可再生有机碳的三分之一。半纤维素、木葡聚糖、葡甘露聚糖、半乳葡甘露聚糖和阿拉伯半乳聚糖的主要成分是木聚糖 [4, 5]。在酿造过程中,木聚糖酶可以提高麦芽汁的过滤性并减少最终产品的浑浊度。它们还可用于咖啡提取和速溶咖啡的制备、洗涤剂、植物细胞的原生质体化、生产用作抗菌剂或抗氧化剂的药理活性多糖,以及生产用作表面活性剂的烷基糖苷 [6]。
摘要:基于质谱的有限蛋白水解化学蛋白质组学方法已成为识别和分析小分子 (SM) 与其蛋白质靶标之间相互作用的有力工具。Gracilioether A (GeA) 是一种从海绵中分离出来的聚酮化合物,我们旨在利用这种策略追踪其相互作用组。DARTS(药物亲和力响应靶标稳定性)和 t-LiP-MS(靶向有限蛋白水解质谱)代表了本研究中使用的主要技术。DARTS 应用于 HeLa 细胞裂解物以识别 GeA 靶蛋白,并使用 t-LiP-MS 研究蛋白质与 GeA 结合的区域。通过使用表面等离子体共振 (SPR) 的结合研究和计算机分子对接实验,结果得到了补充。泛素羧基末端水解酶 5 (USP5) 被确定为 GeA 的一个有希望的靶点,并解释了 USP5-GeA 复合物的相互作用特征。USP5 是一种参与蛋白质代谢途径的酶,通过将降解蛋白质上的多泛素链分解为泛素单体。这种活性与不同的细胞功能有关,包括染色质结构和受体的维持、异常蛋白质的降解和致癌进展。在此基础上,这些结构信息为后续研究开辟了道路,重点是确定 Gracilioether A 的生物学潜力以及基于新结构骨架合理开发新型 USP5 抑制剂。
在2016年1月,我们在由Biotrial药理学中心(法国Rennes)代表BIAL-PORTELA&CA的I期临床试验中获悉了严重不良事件(SAE)。sa(圣马梅德·杜·科罗纳多(coronado),portugal)。试验涉及化合物BIA 10-2474,该药物旨在抑制脂肪酸酰胺水解酶(FAAH)。经过两个初始阶段(单一升级剂量高达100 mg和动力学食物相互作用研究),并消除了任何不愉快的SAE,即阶段的阶段,该阶段旨在检查多种剂量的效果(5或6次每日剂量),导致了6名参与者的SAE,这些参与者都被接受了最高测试的剂量剂量剂量(50 mg)。这是一种阈值效应,因为没有报道SAE,以前给志愿者的剂量较低,为20 mg。最严重的症状具有中心神经系统特征,最糟糕的是与昏迷迅速导致脑死亡相关的症状。在其他5个住院的细节中,有2个受到严重的神经系统损害(显然在几天之内有临床改善)。由于这些事件,审判立即被暂停。更多信息(包括审判协议)可在法国国家医学和健康产品安全机构(ANSM)1的网站上获得1。该机构最近还发布了总结
摘要:药用植物拥有各种具有巨大经济价值的内生微生物。因此,本研究的重点是分离和鉴定来自阿拉什(埃及)干旱地区的药用植物的细菌内生菌,及其作为增强番茄植物生长的生物调节剂的潜在作用。在这项研究中,八个内生细菌分离株显示了对测试真菌的直接广泛拮抗作用。根据拮抗活性,研究了这些分离株,以根据其16S rRNA基因序列进行识别,例如lysinibacillus fusiformis,pumilus pumilus,siamensis,siamensis,paenibacillus peoriae,paenib,paenib。polymyxa,铜绿假单胞菌A,Brevundimonas diminuta和Providencia vermicola。筛选菌株的各种植物生长促进(PGP)属性,包括吲哚-3-乙酸(IAA),氨,铁载体,磷酸酶,水解酶产生和磷酸盐溶解。孤立的细菌菌株具有可变的植物生长促进活性。评估了两种选择的内生细菌菌株,其生物控制潜力针对由氧气孢子菌和溶孢菌引起的番茄真菌根腐病疾病,以进一步评估其在温室条件下的PGP能力。在温室下,B。bumilusnaw4和铜绿假单胞菌A NAW6被证明有效地赋予在压力下以及在正常生长条件下的西红柿上带来积极的好处。