第 3 天:UV 映射概述 – 介绍如何展开网格并准备进行纹理处理。第 4 天:使用图像映射进行纹理处理 – 使用图像映射和 UV 坐标将基本纹理应用于您的车辆模型。第 5 天:高级 UV 映射技术 – 探索更复杂的展开方法,以获得更好的纹理应用。第 6 天:着色和材质 – 了解如何使用 Blender 的着色器系统创建和分配逼真的材质。第 7 天:3D 场景的照明 – 为您的车辆模型设置有效的照明,以增强纹理可见性和真实感。第 8 天:渲染设置和优化 – 了解高质量渲染和性能优化所需的设置。第 9 天:项目审查和改进 – 根据讲师反馈确定纹理、材质和渲染设置。第 10 天:项目 1 提交和审查 – 提交您的渲染车辆项目并参与同行评审。项目 2:渲染场景(第 20 天截止)第 11 天:环境建模简介 - 学习构建 3D 环境的技术,重点是场景构图。第 12 天:建模背景元素 - 开始建模基本场景元素,例如建筑物、树木和地形。第 13 天:纹理场景模型 - 使用各种技术和图像贴图将纹理应用于背景和前景模型。第 14 天:环境场景的照明 - 尝试不同类型的照明设置以在场景中营造氛围。第 15 天:高级材质创建 - 为场景中的自然和人造物体创建逼真的材质(例如玻璃、金属)。第 16 天:摄像机角度和构图 - 设置摄像机视图并尝试构图以增强场景的视觉冲击力。第 17 天:粒子系统和效果 - 学习如何创建粒子系统以实现烟雾、雨或雾等环境效果。第 18 天:渲染和后期处理 - 了解如何渲染整个场景并在 Blender 中应用后期处理技术。第 19 天:场景审查和反馈 – 根据讲师反馈完善场景并准备最终渲染。第 20 天:项目 2 提交和审查 – 提交渲染的场景项目并参与同行评审和讨论。项目 3:渲染角色(截止时间为第 30 天)第 21 天:角色建模简介 – 开始创建基本的 3D 角色模型,重点关注解剖和比例。第 22 天:角色雕刻技巧 – 使用 Blender 的雕刻工具添加细节并完善角色的形态。第 23 天:角色 UV 贴图 – 展开角色模型以实现高效纹理。
摘要。我们提出了一种成像和神经渲染技术,该技术旨在综合通过小说,移动的相机观点从场景中传播光的视频。我们的方法依赖于新的超快成像设置来捕获具有Picsecond级的时间分辨率的首个,多视频视频数据集。与此数据集结合使用,我们基于瞬态字段引入了一个有效的神经音量渲染框架。该字段定义为从3D点和2D方向到高维离散时间信号的映射,该信号代表Ultrafast PlideScales的时间变化。使用瞬态字段渲染自然会由于光速有限而产生影响,包括摄像机传播延迟引起的观点依赖的外观变化。我们产生一系列复杂的效果,包括散射,镜面反射,折射和衍射。此外,我们还使用时间扭曲过程,相对论效应的渲染以及光传输的直接和全局组件的视频综合来证明取消依赖观点的传播延迟。
理解和建模照明效应是计算机视觉和图形中的基本任务。经典的基于物理的渲染(PBR)准确模拟了光线传输,但依赖于精确的场景表示形式 - 说明3D几何,高质量的材料和照明条件 - 在现实世界中通常是不切实际的。因此,我们介绍了一种iffusion r Enderer,这是一种神经方法,该神经方法解决了整体框架内的反向和正向渲染的双重问题。杠杆功能强大的视频扩散模型先验,逆装置模型准确地估算了现实世界视频中的G-buffers,为图像编辑任务提供了一个接口,并为渲染模型提供了培训数据。相反,我们的重新设计模型从G-buffers产生了无明确的光传输模拟的影像图像。具体来说,我们首先训练一个视频扩散模型,用于构成综合数据的反向渲染,该模型可以很好地推广到现实世界的视频,并使我们能够自动化不同标签的真实世界视频。我们
图。1。钢琴弹奏任务设置。(a)SR3T的顶视图渲染,显示水平运动DOF和相关电动机。(b)SR3T的侧视图渲染,显示垂直运动DOF和相关电动机。(c)第一度自由度(DOF)的SR3T控制界面的顶视图渲染;参与者使用其右脚通过脚在脚上的惯性测量单元(IMU)捕获SR3T的运动。(d)第二DOF的SR3T控制接口的侧视图渲染。(e)在球体上投射的人拇指终点的工作表面与(f)(f)在球体上投射的SR3T端点的工作表面进行比较 - 增强人类的工作表面范围(请参阅方法)。(g,h)无约束的飞行员实验的顶部和侧视图:一位经验丰富的钢琴演奏者在佩戴和使用SR3T时自由锻炼钢琴,在使用后的1小时内有效地弹奏11个指钢琴。(i)系统实验:使用右手的5个手指加上左手食指(LHIF)和(J)使用SR3T弹奏序列。(k)参与者使用SR3T扮演在其前面显示器上显示的音符顺序。
摘要 - 大气光散射包含复杂的物理过程,包括各种散射机制和光学参数。应对破译这种现象的计算密集任务所带来的挑战,这项研究引入了有效的实时仿真策略。所提出的方法采用物理驱动的大气建模,利用统一的相位函数模仿瑞利和MIE散射现象。使用射线制定的概念来解决散射积分,将散射积分近似并离散。基于不同光源的特征,确定了准确的射线建设长度,从而简化了光路的计算轨迹。此外,纹理抖动的引入增强了初始采样位置的随机性。阴影地图算法擅长生成阴影映射纹理,从而消除了阴影区域内的光计算的需求,从而减少了样本数量和计算工作负载。最后,颜色合成用于确定在各种雾密度条件下大气的渲染颜色。实验结果表明,与其他先进的光散射渲染方法相比,这种方法可显着提高渲染效率,并实现实时渲染,同时保持逼真的光散射效果。
最近的研究使会说话的头视频的渲染能够捕捉到高富达的头部动态。然而,对详细的身份 - 特定的微表达和自发运动进行建模,例如唇部运动和眼睛闪烁,同时在听觉和视觉信号之间实现高度同步,这一挑战是一个挑战。在本文中,我们借助于散布的音频来解决此问题。具体来说,我们首先提取将保留特定于身份信息的核心听觉组件(content,timbre,ronythm和pitch)中脱离的音频功能。然后,散布的音频嵌入与视觉嵌入一起馈入条件隐式功能,以便学习高质量的视听映射以获取细节。实验结果表明,我们的方法可以(1)成功渲染针对每个正在建模的人的个性化的详细的身份 - 特定于特定的微表达,(2)提高了音频视觉渲染结果的保真度。
图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
摘要。3D高斯碎片在实时神经渲染中引起了广泛的关注和应用。同时,人们对这种技术在稀疏观点中的限制,绩效和鲁棒性等方面引起了人们的关注,从而导致了各种改进。然而,显然缺乏关注分裂本身固有的局部仿射近似引入的投影错误的基本问题,以及这些错误对照片真实渲染质量的结果影响。本文介绍了3D gaus-sian脱落的投影误差函数,从投影函数的一阶泰勒膨胀开始,从剩余的误差开始。分析建立了误差与高斯平均位置之间的相关性。subsemess,利用功能优化理论,本文分析了该函数的最小值,以提供最佳的投影策略,以涉及最佳的高斯分裂,这可以使各种摄像机模型可观。实验验证进一步提出了这种投影方法可以减少伪影,从而导致更令人信服的现实渲染。
本文介绍了一种新开发的基于物理的成像模拟器环境 SISPO 的架构和功能,该环境专为小型太阳系天体飞越和类地行星表面任务模拟而开发。该图像模拟器利用开源 3-D 可视化系统 Blender 及其 Cycles 渲染引擎,支持基于物理的渲染功能和程序微多边形位移纹理生成。该模拟器专注于逼真的表面渲染,并具有补充模型,可为彗星和活跃小行星生成逼真的尘埃和气体环境光学模型。该框架还包括用于模拟最常见图像像差的工具,例如切向和矢状散光、内部和外部彗形像差以及简单的几何畸变。该模型框架的主要目标是通过更好地模拟成像仪器性能表征、协助任务规划和开发计算机视觉算法来支持小型太空任务设计。 SISPO 允许模拟轨迹、光线参数和相机的固有参数。