以 2008 年的水平为基准。为了实现这些具有挑战性的目标,海运业必须引入 SO X 、NO X 和 CO 2 排放量可忽略不计或较低的环保燃料。氨在海运应用中的应用前景广阔,因为它具有高能量密度、低可燃性、易于储存和低生产成本的特点。此外,氨可用作燃料电池等各种推进器的燃料,并可由可再生能源生产。因此,氨可用作多功能船用燃料,利用现有基础设施,并且 SO X 和 CO 2 排放量为零。然而,要使氨成为实现航运脱碳的有力燃料,还需要克服几个挑战。这些因素包括选择合适的氨燃料发电机、选择合适的系统安全评估工具以及缓解氨危害的措施。本文讨论了用于船舶应用的氨燃料燃料电池的最新进展,并介绍了它们的潜力和挑战。
就降低电解质的 ASR 而言,通过控制织构化 YSZ 膜中的晶界和孔隙率,可在 500°C 时分别获得 1.04 eV 和 0.02 S/m 的活化能和离子电导率。这些值低于块体材料,据报道块体材料的活化能和离子电导率分别为 1.18 eV 和 0.1 S/m [19]。此外,Si 上的外延 YSZ 膜在 500°C 时显示出 0.79 eV 的活化能和 ~0.003 S/m 的离子电导率,与织构化膜相比,性能进一步提高[20]。使用垂直排列纳米复合材料 (VAN) 系统也实现了电解质性能的显著改善。几种薄膜 VAN 体系 (YSZ、SrZO 3 和 Sm 掺杂的 CeO 2 ) 显示出超过一个数量级的离子电导率 [21-23],这指向了近期的室温电解质概念 [24]。然而,到目前为止,VAN 薄膜的优异性能仅在单晶基底上得到证实。
案例研究................................................................................................................................................ 9
目前,喀麦隆的电力缺口估计为 50 吉瓦时。这种缺口的特点是频繁甚至长时间停电,扰乱了经济和社会生活。为了克服电力短缺,喀麦隆决定利用其可再生能源潜力生产 3000 兆瓦的电能。事实上,喀麦隆的年太阳辐射量从 4.28 千瓦时/平方米/年到 5.80 千瓦时/平方米/年不等。喀麦隆拥有 2500 万公顷森林,覆盖了其四分之三的领土,是撒哈拉以南非洲第三大生物量潜力国。此外,极北地区牛、山羊、绵羊和猪的饲养活动十分活跃,饲养量达数百万头,产生大量粪便。因此,本文首次使用 HOMER Pro 研究了两种混合系统方案的技术经济可行性,即光伏/燃料电池/电解器/沼气(方案 1)和光伏/电池/燃料电池/电解器/沼气(方案 2),用于马鲁阿市的能源和氢气生产,马鲁阿市被认为是喀麦隆阳光最充沛的地区(极北地区)。本设计结合使用电解器、燃料电池和氢气罐,以减少电池存储需求。本研究考虑了三种类型的家庭用电需求社区(低、中、高消费者)。结果表明,对于低能耗社区,场景 1 的最佳系统架构包括 144 kW 光伏组件、15 kW 沼气发电机、11 kW 转换器、15 kW 电解器、15 kW 燃料电池和 5000 kg 氢气罐,采用循环充电 (CC) 调度策略。对于场景 1 的中等能耗社区,879 kW 光伏组件、15 kW 沼气发电机、31.9 kW 转换器、24 kW 燃料电池、24 kW 电解器和 5000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 1 的高能耗社区,11,925 kW 光伏组件、15 kW 沼气发电机、570 kW 转换器、266 kW 燃料电池、266 kW 电解器和 25,000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 2,以下架构是最佳混合系统:对于低消费者,138 kW 光伏模块、15 kW 沼气发电机、27.2 kW 转换器、15 kW 燃料电池、15 kW 电解器、5000 kg 氢气罐和 480 个电池蓄电池,采用 CC 调度策略;对于中等消费者,234 kW 光伏模块、15 kW 沼气发电机、57.8 kW 转换器、24 kW 燃料电池、24 kW 电解器、5000 kg 氢气罐和 1023 个电池蓄电池,采用负载跟踪 (LF) 调度策略;对于高耗能者,820 kW 光伏组件、15 kW 沼气发电机、405 kW 转换器、266 kW 燃料电池、266 kW 电解器、25,000 kg 氢气罐和 9519 个电池储能系统,并采用 CC 调度策略。情景 1 的平准化能源成本 (LCOE) 分别为 0.871 美元/kWh、0.898 美元/kWh 和 1.524 美元/kWh,针对情景 1,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 7.66 美元/千克、4.95 美元/千克和 0.45 美元/千克。针对情景 2,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 3.06 美元/千克、1.34 美元/千克和 0.15 美元/千克。从优化结果还得出结论,水电解器、燃料电池和氢气罐的组合
活动 • 形成对术语的共同理解 • 当前大气中的氢预算 • 估计由于氢气使用增加而导致的未来大气氢水平以及评估经济中氢气使用增加对气候变化的影响 • 当前要求监测、测量和报告氢气排放的政策、法规、标准和大规模融资机会 • 当前用于检测、量化和缓解氢气排放的方法和技术 https://www.iphe.net/
Item: The cost of a 275-kW net proton exchange membrane (PEM) fuel cell system for a Class 8 long- haul heavy-duty (HD) truck based on 2023-status next-generation laboratory technology 1 and operating on direct hydrogen is projected to be approximately $170/kW net when manufactured at a volume of 50,000 units/year (~$160/kW net when manufactured at a volume of 100,000 units/year).这些成本包括设计方面,以提高预计将达到长途卡车所需的100万英里(25,000小时)的燃料电池系统性能。2耐用性假设包括堆栈过度尺寸(允许燃料电池降解),高PT载荷(总计0.45 mg pt/cm 2),单金属PT阴极催化剂,20微米厚的膜和植物平衡(BOP)更换成本。理由:美国能源部(DOE)氢气和燃料电池技术办公室(HFTO)能源效率和可再生能源办公室(EERE)支持进行详细分析的项目,以每年估算燃料电池系统的成本状态。战略分析公司(SA)基于2023技术和每年最高100,000辆的制造量对275 kW净直接氢PEM HD燃料电池系统进行了成本分析。此记录中报告的所有费用均以2016年的价格为2016年,除非另有说明是为了跟踪技术改进的成本影响,而不是通货膨胀或材料定价中波动性的影响。如果以2020美元的价格报告,如果保留PT,则预计的总系统成本将增加约4美元/kW
蓝色氢是一种通过蒸汽甲烷改革或煤气化产生H 2的过程,但是产生的碳被捕获和隔离,而不是将其释放到大气中。蓝色氢的碳足迹因此取决于所使用的碳捕获技术的效率,最大CO 2捕获率通常以70%至95%的速度引用。蓝色氢的生产尚未大规模存在;但是,预计在未来几十年的全球绿色H 2产量的预计中,它将发挥重要的临时作用(请参阅下一章)。还指定了其他几种颜色代码用于氢生产,其“粉红色”和“黄色”氢表示电解为核或电网电源提供动力。“棕色”或“黑色”氢是指通过煤气制造的H 2,这是一个极高的CO 2排放的过程,与绿色氢相反。
氢技术提供了有前途的前景,可以在更可持续的世界中应对未来的能源需求。鉴于他们的潜力,他们的技术发展是许多政策的核心。因此,燃料电池的精确建模对于优化其控制并提高其性能至关重要。本文始于对有关物质运输的原理以及用质子交换膜(PEMFC)计算燃料电池电压的最新进展的深入分析。它通过介绍相关方程,其适用性和基本假设来详细了解这些原理,这构成了未来模型的发展。基于这项工作,已经开发了一种使用成品差异方法的PEMFC的一个维度,动态,两相和等温模型。该模型构成了功能块模型的简单性与数字流体力学模型的准确性(英语:计算流体动力学模型)之间的妥协,从而提供了内部状态的精确描述,同时对计算的需求较低。此外,在过压的计算中引入了一种新的物理参数,液体水饱和系数(S LIM)以及相应的公式。开源,基于此模型并在Python中实施的Alphapem软件,然后开发并发布。模型A此新参数将电压下降连接到高电流密度与催化层中存在的液体水量和燃料电池的工作条件。这种新建立的燃料电池内部状态及其操作条件之间的联系有望优化其控制,从而改善其性能。他提出了一个模块化体系结构,该体系结构有助于新功能的创建,并包括友好的图形界面。alphapem还结合了一种自动校准方法,可以通过研究的特定燃料电池对模型进行精确的校准。在使用此软件时,可以有效地计算有关所有当前密度的内部状态的详细信息。以极化和EIS曲线为特征的静态和动态性能也可以在不同的工作条件下进行模拟。此外,Alphapem为在车载系统中使用高级电池的高级模拟开辟了道路,因为它可以在动态操作条件下进行精确且快速的响应。
• A. 压缩机/膨胀机。目前还没有能够最大限度降低寄生功耗并满足封装和成本要求的汽车型压缩机/膨胀机。为了在实验室测试中验证功能,当前系统通常使用现成的压缩机,这些压缩机并非专门为燃料电池应用而设计,导致系统笨重、昂贵且效率低下。符合 FreedomCAR 计划技术指南的汽车型压缩机/膨胀机需要与燃料电池和燃料处理器进行设计并集成,以便整个系统满足封装、成本和性能要求。
19.“危险区域”是指存在或可能存在爆炸性气体环境或易燃气体(闪点低于 60°C)的区域,其数量之多需要对电气设备的建造、安装和使用采取特殊预防措施。危险区域分为 0、1 和 2 区,定义如下(另请参阅 IEC 60079-10-1 第 10-1 部分第 2.5 节中规定的区域分类): (1) 0 区是持续存在或长时间存在爆炸性气体环境或闪点低于 60°C 的易燃气体的区域。(2) 1 区是在正常运行中可能出现爆炸性气体环境或闪点低于 60°C 的易燃气体的区域。(3) 2 区是在正常运行中不可能出现爆炸性气体环境或闪点低于 60°C 的易燃气体的区域,即使出现,也只是偶尔出现,并且只会存在很短时间。