拓扑物理学一直是冷凝物理物理学中最活跃的领域之一,到目前为止,已经发现了一系列新兴现象,包括拓扑绝缘子,半法和超导体,以及它们相关的量子自旋旋转式霍尔效应和主要的巨大效果和大巨大效果等。[1 - 6]。实际上,作为数学的概念,拓扑可以明确或暗示主导各种物理行为,而不限于电子,声音,光子,光子谱带在动量空间中。拓扑结合和铁罗克系统的合并已经产生了一个完全不同的故事,即磁性和/或电动型电动型的真实空间纹理可以是拓扑的,包括天空,梅隆和涡流数量有整数绕组数[7-11]。最近,在一些多表演中已经揭示了拓扑物理学的另一个分支,该分支在特定的磁电(ME)过程中表现出拓扑的绕组行为。例如,对于四倍的钙钛矿TBMN 3 Cr 4 O 12,提出了拓扑不可取向的罗马表面来描述磁性诱导的极化(P)的三维轨迹[12,13]。另一个突破是ME在GDMN 2 O 5中的切换,该5响应磁性周期生成了半MN旋转的拓扑数[14]。有趣的是,这种受拓扑保护的我的过程可以理解为在量子水平上的me曲柄。
火箭发动机的再生冷却结构承受着极大的负荷。负荷是由热燃烧气体(CH4/OX 约为 3500 K)和冷冷却通道流(LCH4 约为 100 K)相互作用引起的,这导致结构中存在较大的温度梯度和高温(铜合金最高可达 1000 K 左右),同时两种流体之间存在较高的压力差。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流,以及它们的相互作用,特别是结构的寿命。自 20 世纪 70 年代以来,已经对燃烧室结构进行了一些寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室 [1] 的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳。在小尺寸燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的室内压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量均未
相互作用系统通常以它们的基态和低能激发的特性为特征。例如,在自旋系统中,低能激发的特性将海森堡模型与伊辛或 XY 模型区分开来,即使基态可能相似。在量子材料中,可以通过仔细分类它们的激发来区分各种各样的有间隙系统(由电荷密度波、强关联或超导引起)。低能激发的特性因材料所表现出的物理行为而异。考虑一个绝缘体,其低能行为可以用相互作用的自旋很好地描述。它将表现出与金属费米液体不同的低能激发,而金属费米液体的低能行为可以用电子准粒子很好地描述。此外,不同的探针(如光导率、中子散射或光发射)可以探测系统的不同方面。举一个具体的例子,我们来看看 Fe 基超导体 FeSe 的低能激发。这些激发既可以从自旋(中子)1 的角度观察,也可以从电荷(光学)2 的角度观察。这两种方法都可以提供有关该材料的互补信息。有些多体相互作用系统可以通过分析确定其光谱。在自旋系统中(如 XY 模型),Holstein-Primakoff 3 或 Jordan-Wigner 4 变换会将系统转换为可以立即确定激发光谱的形式。这是因为自旋系统的激发实际上具有费米子特性,而从原始自旋图像中提取这种特性很麻烦。另一种方法是猜测波函数,然后获得激发,例如在 BCS 理论 5 中
有限元方法(FEM)是计算研究中最强大的工具之一,可以生成物理现象的解决方案。由于其在求解复杂的物理行为方面的功效,它被广泛用于结构工程[1],[2],热和热分析[3],[4],计算流体动力学[5],[6],Biofluid Simulation [7],[8],[8]和电子磁学[9]。在所有这些应用中,FEM解决传热问题的能力在许多领域都在开创。由于FEM的能力,我们使用了一个简单的FEM代码来解决一个基本的1D热传导问题。FEM的引入为工程师和科学家提供了多个自由度,可以从管理方程式中分析任何物理现象。最重要的方面是FEM的几何独立性。在大多数情况下,分析解决方案仅适用于非常简单的特定几何形状。相比之下,FEM是一种解决问题的方法,该问题高度能够根据某些初始参数近似实际解决方案。纳入FEM可以消除对复杂分析解决方案的需求。fem通过构建矩阵并迭代解决任何现象,从而使范围很容易获得见识。fem是解决预期物理现象方程的框架,在我们的情况下,即线性热传导。fem首先要使方程式的弱形式,然后将域离散到较小的域,计算形状函数,应用边界条件等。我们方法的详细信息将在方法部分中描述,重点是我们的目标。在这项研究中,我们将在特定边界条件下解决稳态线性1D热传导问题。尽管它是一个简单的模型,但它为将来接近更复杂的模型提供了起点。此外,我们将讨论变化参数的结果,并评估分析模型中FEM模型的性能。2。方法论
相互作用系统通常以它们的基态和低能激发的特性为特征。例如,在自旋系统中,即使基态可能相似,低能激发的特征也可以将海森堡模型与伊辛或 XY 模型区分开来。在量子材料中,可以通过仔细对它们的激发进行分类来区分各种各样的有间隙系统(由电荷密度波、强关联或超导引起)。低能激发的特性因材料所表现出的物理行为而异。考虑一个绝缘体,其低能行为可以用相互作用的自旋很好地描述。它将表现出与金属费米液体不同的低能激发,而金属费米液体的低能行为可以用电子准粒子很好地描述。此外,不同的探针(如光导率、中子散射或光发射)可以探测系统的不同方面。举一个具体的例子,我们来看看 Fe 基超导体 FeSe 的低能激发。我们已经从自旋(中子)[ 1 ] 和电荷(光学)[ 2 ] 两个角度对这些激发进行了研究。这两个角度提供的关于材料的相关信息相互补充。有些多体相互作用系统可以通过分析确定其光谱。在自旋系统中(如 XY 模型),Holstein-Primakoff [ 3 ] 或 Jordan-Wigner [ 4 ] 变换会将系统转换为可以立即确定激发光谱的形式。这是因为自旋系统的激发实际上具有费米子特性,而这种特性在原始自旋图像中很难提取。另一种方法是猜测波函数,然后获得激发,例如 BCS 理论 [ 5 ] 或量子霍尔效应 [ 6 ]。然而,对于一大类系统,还没有已知的精确解,必须通过数值方法获得编码低能激发的相关函数。可以通过以下方式实现
原子建模通常分为两种不同类型的模拟。一方面,包括Hartree -Fock和密度功能理论(DFT)方法在内的量子方法被认为是最准确的,几乎用于任何类型的化学物种[1,2]。另一方面,经典力场用于执行精度较低的大规模和长期模拟[3,4]。但是,仍然很难连接这两种方法,直到现在,人们几乎无法执行涉及数百万个原子的纳秒原子的模拟,同时保留量子方法的准确性。在这种情况下,近年来已经提出了机器学习互动电位(MLIP),并显示出实现此类模拟的巨大潜力[5-7]。目前考虑了许多方法,包括人工神经网络[8],高斯近似方法[9],线性电位[10,11],频谱邻域分析电位[12],对称梯度域机器学习[13,14]和矩张量张量的电位[15]。这些技术的成功得到了成功解决的各种材料的认可:纯属金属[16-20],有机分子[21-24],氧化物[25,26],水[27 - 31],无定形材料[32 - 37]和HYBRIDPEROVSKITES [32 - 37]和HYBRIDERIDPEROVSKITES [38]。对于所有这些技术,主要过程包括对力场使用非常通用的分析公式,然后将其进行参数化以匹配DFT计算数据库,包括总能量,力和应力张量。但是,人们承认MLIP有时会显示出对学习数据库中未包含的系统的可传递性。在最坏的情况下,MLIP SO-WELL拟合到其学习数据库中,可以在其外观察到非物理行为。为了解决此问题,主要建议是定期检查电位的准确性,因为进行了机器学习分子动力学模拟并改善MLIP“ fly the Fly” [38 - 40]。,据我们所知,这种方法的这种缺陷从未经过定量调查,而在被用户和开发人员承认的同时。
印度的第三次月球任务Chandrayaan-3将在月球高纬度位置部署一个着陆器和一个流浪者,使我们能够对这种原始位置进行有史以来的首次原位科学调查,这将有可能提高我们对主要地壳形成和后续修改过程的理解。主要着陆点(PLS)位于69.367621°,32.348126°。作为偶然性,在几乎相同的纬度上选择了替代着陆点(ALS),但向西约450 km至PLS。在这项工作中,使用了有史以来最好的高分辨率Chandrayaan-2 OHRC Dems和Ortho-images进行了对ALS的地貌,组成和温度特征的详细研究,该数据是从Chandrayaan-1和On Incon each each each each each each eachine lunar侦察机获得的数据集。为了理解热物理行为,我们使用了一个完善的热物理模型。我们发现Chandrayaan-3 ALS的特征是平滑的地形,中央部分相对较高。als由埃拉托斯尼(Eratosthenian)年龄的莫雷特斯(Moretus-A火山口)主导,位于Tycho Crater的喷出毯上。ALS是一个科学有趣的地点,可以从Tycho和Moretus中取出弹射材料。然而,由于存在Eratosthenian年龄喷射材料,该地点是巨石富集,OHRC得出的危险图证实了ALS内的75%无危险区域,因此适合着陆和漫游者操作。带有APX和LIBS板上的Tycho弹出的痕迹将有助于理解ALS内的组成变化。基于位点的光谱和元素分析,Fe的重量百分比约为4.8(wt。%),毫克〜5 wt。%和Ca〜11 wt。%。在构图上,ALS类似于具有典型的高地土壤类型组成的PL。的空间和昼夜变异性约为40 K和〜175 K。与PL相比,ALS属于类似位置,但与PL相比,ALS显示出降低的白天温度和夜间温度的降低,这表明与PL相比具有独特的热物理特征。像PLS一样,ALS似乎也是科学调查的有趣场所,Chandrayaan-3有望为对月球科学的理解提供新的见解,即使它恰好降落在替代着陆点。
氢(H 2)是一种干净的燃料和能量过渡到绿色可再生能源的关键促进器,到2050年才能实现零排放的方法。地下H 2存储(UHS)是一种重要的方法,为低碳经济提供了一种永久解决方案,以满足全球能源需求。但是,UHS是一个复杂的程序,在该过程中,由于与垫子气和储层液混合,可以影响H 2污染,孔尺度散射和大规模存储容量可能会受到H 2污染的影响。文献缺乏对现有热力学模型的全面研究,以计算H 2蓝色混合物的准确传输特性对于有效设计各种H 2存储过程所必需的必不可少的混合物。这项工作基于国家(EOSS),彭 - 鲁滨逊(PR)和Soave Redlich-kwong(SRK)(SRK)及其对波士顿 - 马西亚斯(PR-BM)和Schwartzentruber-Renon(SRK)的修改以及其在可靠性方面的可靠性,并预测热液的属性,并涵盖了Hyphersical propertial hyphers, C 2 H 6,C 3 H 8,H 2 S,H 2 O,CO 2,CO,CO和N 2除了基于Helmholtz-Energy的EOSS(即PC-SAFT和GERG2008)。基准模型反对涉及较大压力(0.01至101 MPa),温度(92 K至367 K)和摩尔级分(0.001至0.90)h 2的蒸气 - 液平衡(VLE)的实验数据。这项工作的新颖性在于基准和优化上述EOSS的参数,以研究VLE信封,密度和其他关键运输特性,例如热容量和Joule -joule -joule -thomson h 2混合物的Thomson系数。结果突出了依赖温度的二进制相互作用参数对嗜热物理特性的计算的显着影响。SR-RK EOS在立方EOSS中与均方根误差和绝对平均偏差之间的VLE数据表现出最高的一致性。PC-SAFT VLE模型显示出与SR-RK相当的结果。敏感性分析强调了杂质对在H 2存储过程中更改H 2蓝色流的热物理行为的高影响。©2022作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
讲座:周二周四下午 12:45-2:05,McPherson 实验室 2017 讲师:林嘉琳教授 电子邮件:lin.789@osu.edu 这是联系我的最佳方式。电话:614-292-6634 办公室:1128 Derby Hall 办公时间:周四上午 10:30-12:30 助教:Ben Salopek 电子邮件:salopek.7@osu.edu 办公室:1070 Derby Hall 办公时间:周二和周四下午 2:30-3:30 教科书:《大气科学:入门调查》(第二版),作者:John M. Wallace 和 Peter V. Hobbs,Academic Press 出版。(在 OSU 书店订购) Carmen Canvas 将用作课程网站,讲座 powerpoint 文件、参考资料、公告和成绩均发布在此。所有作业将提交给 Carmen。课程目标:本课程旨在广泛介绍气候学,即对地球平均天气状态的研究。重点是行星能量预算、区域气候、气候变化以及过去和未来的气候。能量预算包括太阳能接收、红外辐射损失、湍流热通量和地球大气系统的重新分布,以及大气水分的作用、其全球空间分布及其在能量交换以及云和降水形成中的重要性。课程讲座将描述世界气候的成因和空间分布以及一些观测到的天气现象的物理机制。课程将描述大气小尺度和大尺度运动的物理原因和空间变化。课程将解释 21 世纪气候的分布和成因,并讨论过去气候的分布、重建方法及其可能的解释。本课程还将考虑人类如何有意或无意地成为天气和气候物理过程的一个因素。许多学生会发现课程中讨论的基本概念和思想将应用于他们感兴趣的领域以及日常生活中。成功完成本课程后,学生应 (1) 能够描述大气的结构和成分以及它如何随时间变化;(2) 了解导致地球上太阳辐射能量变化的因素,并能够描述全球辐射平衡;(3) 能够解释导致大气特征形成的物理过程,包括云、降水、风和风暴;(4) 对气体的物理行为以及不同形式的能量及其在大气运动和天气系统中的作用有很好的理解;(5) 对与大气有关的环境问题有很好的理解,包括“温室效应”、臭氧消耗、空气污染和城市气候变化;(6) 能够描述全球温度、
观察:研究生物系统与人工材料之间的形成和相互作用是探测复杂的生物物理行为并解决挑战性生物医学问题的重要性。生物电界面,尤其是基于纳米结构的界面,已改善与细胞和组织的兼容性,并实现了生物调节的新方法。尤其是独立且远程激活的生物电装置显示出进行精确生物物理研究和有效临床疗法的潜力。与单细胞或细胞器相互作用需要足够小的尺寸的设备,以进行高分辨率探测。纳米级半导体(鉴于其各种功能)是亚细胞调制的有前途的设备平台。组织级调制需要附加考虑该设备与组织表面的共形接触或无缝三维(3D)生物整合的机械依从性。在这种方法中,灵活甚至开放式工程设计至关重要。对于慢性器官整合,材料和装置配置都需要最高水平的生物相容性。此外,与器官中许多单个细胞同时相互作用是必要的可扩展和高吞吐量设计。可以通过确保在生物区域的机械行为匹配(包括钝化或耐药性设计)来减轻生理影响,或结合自我修复或适应性的特性,从而改善器官植入设备的物理,化学和机械稳定性。最近的研究表明,纳米结构材料设计的原理可用于改善生物区域。纳米可细胞外界面经常用于细胞和组织的电气或远程光学调节。特别是,现在可以用于设计和筛选纳米结构硅,尤其是化学蒸气沉积(CVD)衍生的纳米线和二维(2D)纳米结构膜,用于体外和体内生物学调节。用于细胞内和细胞间生物学调节,通过纳米线的内在化创建了半导体/细胞复合材料,这种细胞复合材料甚至可以与活组织进行整合。对于神经元和心脏调节也证明了这种方法。在不同的正面,激光衍生的纳米晶半导体显示电化学和光电化学活性,它们用于调节细胞和器官。最近,纳米级构建块的自组装能够制造出效率的单片基碳基电极,用于体外刺激心肌细胞的体外刺激,对视网膜和心脏的体外刺激以及体内刺激Sciatic神经。对纳米可生物电机调制的未来研究应着重于提高当前和新兴技术的效率和稳定性。新材料和设备可以访问新的询问目标,例如亚细胞结构,并具有更适应性和响应性的特性,可实现无缝集成。从能量科学和催化中汲取灵感可以帮助这种进步,并开放生物学调节的新途径。活生物电子学的基本研究可能会产生新的细胞复合材料,以进行多种生物信号控制。可以实现细胞类型的靶向,因此在该领域特别感兴趣。