观察:研究生物系统与人工材料之间的形成和相互作用是探测复杂的生物物理行为并解决挑战性生物医学问题的重要性。生物电界面,尤其是基于纳米结构的界面,已改善与细胞和组织的兼容性,并实现了生物调节的新方法。尤其是独立且远程激活的生物电装置显示出进行精确生物物理研究和有效临床疗法的潜力。与单细胞或细胞器相互作用需要足够小的尺寸的设备,以进行高分辨率探测。纳米级半导体(鉴于其各种功能)是亚细胞调制的有前途的设备平台。组织级调制需要附加考虑该设备与组织表面的共形接触或无缝三维(3D)生物整合的机械依从性。在这种方法中,灵活甚至开放式工程设计至关重要。对于慢性器官整合,材料和装置配置都需要最高水平的生物相容性。此外,与器官中许多单个细胞同时相互作用是必要的可扩展和高吞吐量设计。可以通过确保在生物区域的机械行为匹配(包括钝化或耐药性设计)来减轻生理影响,或结合自我修复或适应性的特性,从而改善器官植入设备的物理,化学和机械稳定性。最近的研究表明,纳米结构材料设计的原理可用于改善生物区域。纳米可细胞外界面经常用于细胞和组织的电气或远程光学调节。特别是,现在可以用于设计和筛选纳米结构硅,尤其是化学蒸气沉积(CVD)衍生的纳米线和二维(2D)纳米结构膜,用于体外和体内生物学调节。用于细胞内和细胞间生物学调节,通过纳米线的内在化创建了半导体/细胞复合材料,这种细胞复合材料甚至可以与活组织进行整合。对于神经元和心脏调节也证明了这种方法。在不同的正面,激光衍生的纳米晶半导体显示电化学和光电化学活性,它们用于调节细胞和器官。最近,纳米级构建块的自组装能够制造出效率的单片基碳基电极,用于体外刺激心肌细胞的体外刺激,对视网膜和心脏的体外刺激以及体内刺激Sciatic神经。对纳米可生物电机调制的未来研究应着重于提高当前和新兴技术的效率和稳定性。新材料和设备可以访问新的询问目标,例如亚细胞结构,并具有更适应性和响应性的特性,可实现无缝集成。从能量科学和催化中汲取灵感可以帮助这种进步,并开放生物学调节的新途径。活生物电子学的基本研究可能会产生新的细胞复合材料,以进行多种生物信号控制。可以实现细胞类型的靶向,因此在该领域特别感兴趣。
主要关键词