对于那些需要线性代数介绍的人来说,与本书兼容的观点包含在吉尔·斯特朗(Gil Strang)的“线性代数介绍”中。有关线性代数的更高级主题,我建议罗杰·霍恩(Roger Horn)和查尔斯·约翰逊(Charles Johnson)的“矩阵分析”及其“矩阵分析中的主题”。对于与图形相关的物理系统的处理,我建议Gil Strang的“应用数学概论”,Sydney H. Gould的“特征值问题的变异方法”,以及Levin,Peres和Wilmer撰写的“特征值问题的变异方法”以及“ Markov Chains and Mighting Times”。
机器学习或模式识别中出现的许多问题都可以归结为求解关于 x 和 λ 的特征值问题 Ax = λx。降维(PCA、Fisher 判别)、谱聚类或数据表示(拉普拉斯、Hessian 特征图或扩散图)等任务都是基于计算矩阵的特征向量和特征值。有多种方法可以找到矩阵的谱分解。由于在高维中查找矩阵特征多项式的根在计算上不可行,因此只有在特殊情况下才有可能在有限的步骤内准确计算出特征值。通常,查找特征值和特征向量的算法是迭代的,例如幂法、逆法、瑞利商法、QR 方法,并且提供数值近似值而不是精确解。随着行业中矩阵规模的增加,使用快速、准确且可行的方法(即使对于大量数据也适用)尽可能高效地解决特征问题变得非常重要。最近,针对此问题提出了基于神经网络的方法。研究表明,他们的方法可以在相对较短的训练时间内成功解决线性代数系统。在本文中,我们将使用人工神经网络 (ANN) 解决特征问题,并在准确性、效率等方面将结果与标准求解器进行比较。我们通过求解热方程来证明所获得的特征向量的准确性。
2 +,使用相对论量子场理论中的功能方法,即量子铬动力学(QCD)。到此为止,我们通过夸克 - diquark方法将三夸克faddeev方程减少到两体方程,在该方法中,重子被视为夸克和有效的diquarks的绑定状态。这种方法已成功用于轻巧和奇怪的重子。夸克 - diquark bethe salpeter振幅(BSA)的伯特salpeter方程(BSE)量达到相互作用内核的夸克乒乓交换。使用彩虹束截断中的Alkofer-Watson-Weigel相互作用确定夸克和diquark成分。BSE是通过将其转换为特征值问题并解决Quarkdiquark BSA的狄拉克敷料功能来实现的,我们使用Chebyshev扩展进行了评估。特征值问题的矩阵与这些考虑因素以及BSE的颜色和平流结构一起构建。这种结构由包含BSE的颜色迹线和avor因子的矩阵表示,以进行不同的diquark跃迁。我们在质量网格上计算地面和激发态的特征值,在质量网格中,物理状态对应于其相应特征值等于一个的条件。结果表明,基态质量与实验的总体一致,在此我们将模型比例设置为基态质量相对于实验质量的平均比率。激发态显示出比接地状态更高的高估。三重迷人的巴里昂也同意晶格QCD结果。使用QCD的潜在模型与晶格QCD和理论计算一致。仍然需要计算双重魅力的重子。
坐标 𝑖 是链接的。得到的 3N 对特征值和特征向量可以分为对应于平移运动的(其中三对)、对应于分子旋转运动的(除只有两对的线性分子外,其余均为三对)以及对应于振动自由度的。正是这 3N-6 个特征值和特征向量(对于线性分子为 3N-5 个)分别决定了分子的振动频率和简正模式。所有简正频率都不同,因此简正模式(指定三维空间中每个原子振动幅度的 3N 维向量)是线性无关的,并构成分子内部坐标的基础。如果我们只考虑分子内部坐标的 3N-6 空间,可以通过坐标变换进一步简化公式 (4)。将 𝑹 坐标系转换为“简正
量子物理和计算机科学相交的一个基本问题是计算n个相互作用粒子系统的能量水平。这些是局部汉密尔顿H的特征值,这是一种作用于张量产品h≃(c d)⊗n的共轭 - 对称(Hermitian)线性操作员。局部属性意味着h是术语hη⊗i的总和,其中hη是k = o(1)张量因子的操作员,而i是其余因子上的身份。使用| v |的局部性结构产生了g =(v,e)的HyperGraph g =(v,e) = n,并由M Hyperedgesη∈E索引。根据张量产品空间的尺寸,计算能量水平的标准对角线化程序将需要指数时间。此类别中最著名的问题侧重于计算最低特征值,即基态能量。这概括了计算约束满意度问题的最佳值的问题Max-CSP,但是现在“可变分配”是具有指数级参数的向量。计算最低特征值,直到已知QMA [1](NP的量子类似物)已知为一定的逆多项式准确性。一个主要的开放问题是量子pcp-conture [2],它认为QMA是近似于Hamiltonian H = P
本课程的目的是在理论上广泛使用的一些数学技术,以尽可能地整合某种形式的理解和欣赏。课程目录审查线性向量空间:(定义;线性独立性和基础向量;功能空间;正交性和完整性关系)。特征向量和特征值:(线性操作员的审查;伴随和Hermitian操作员;特征向量和特征值。重量功能。Sturm-Liouville理论; Hermitian Sturm-Liouville运营商。球形谐波和Legendre方程。量子振荡器和Hermite方程。正交多项式)。格林的功能:(定义。示例:静电。Green功能的构造:特征态方法;连续性方法。量子散射在时间无关的方法中;扰动理论。旅行波。示例:电磁学。傅立叶变换方法;阻碍了格林的功能和智障潜力)。积分方程:(分类:第一和第二种的积分方程;弗雷德姆和伏特拉方程。简单案例:退化内核;方程式通过傅立叶变换溶解;可简化微分方程的问题。Neumann系列解决方案(扰动理论);弗雷霍尔姆系列(如果时间)。特征值问题;希尔伯特·史克米特理论)。变化的计算
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。