摘要 恶性胶质瘤因其浸润性生长模式、进展迅速和预后不良而成为最难诊断和治疗的疾病之一。由于血脑屏障的存在,许多抗肿瘤药物对胶质瘤的治疗效果并不理想。替莫唑胺(TMZ)是一种能够穿过血脑屏障的DNA烷化剂。TMZ作为目前治疗恶性胶质瘤的唯一一线化疗药物,被广泛用于提供生存益处;然而,一些患者天生对TMZ不敏感。此外,患者在TMZ治疗期间可能会产生获得性耐药,这限制了抗肿瘤疗效。为了阐明TMZ耐药的机制,许多研究提供了多层次的解决方案,例如提高TMZ在肿瘤内的有效浓度和开发新型小分子药物。本文就替莫唑胺耐药的深层机制进行综述,旨在为制定恶性胶质瘤个体化治疗策略、加速新型靶向药物的研发与转化提供可能。关键词 恶性胶质瘤;胶质母细胞瘤;替莫唑胺;化学耐药;小分子药物
原子层沉积(ALD)是一种具有亚纳光度精度的固体材料层的气相方法。它是在1960年代在苏联独立发明的,名称为分子分层,并在1970年代在芬兰以原子层的外观为名。ALD依赖于以自动终止方式反应的清除步骤分隔的气态反应物的表面。本文介绍了理想ALD表面化学的基本原理,包括饱和和不可逆的反应,每个周期的生长,与ALD相关的单层概念,典型的表面反应机制,饱和度限制因素,生长模式,区域选择性ALD,生长动力学和相关性。它还讨论了与理想ALD的典型偏差。多年来,已经开发了许多不同的ALD工艺化学。可以提供一系列反应堆系统,具体取决于基材的类型和所需的生产力。ALD在实践中广泛适用,因为它以良好的可扩展性为纳米级精度,可用于沉积多种材料。近年来,对ALD的兴趣一直在强烈增长。有关ALD商业应用的最重要部门目前是半导体行业。
113. “用聚合物刷接枝纳米粒子合成的宏观材料” 2023 ,德克萨斯 A&M 大学,德克萨斯州学院城 112. “用聚合物刷接枝纳米粒子合成的宏观材料” 2023 ,WEG 内部讨论会,巴西(虚拟) 111. “用于材料合成的聚合物刷接枝纳米粒子” 2023 ,ACS 秋季会议,加利福尼亚州旧金山 110. “DNA 组装纳米粒子材料的组装、加工和制造” 2023 ,ACS 秋季会议,加利福尼亚州旧金山 109. “纳米粒子超晶格组装:经典晶体结构,但非常规生长模式” 2023 ,晶体生长戈登研究会议,新罕布什尔州曼彻斯特 108. “由纳米粒子组装的宏观材料超晶格” 2023 ,卡弗里理论物理研究所,加利福尼亚州圣巴巴拉 107. “由纳米粒子超晶格组装的宏观材料” 2023 ,加州大学圣巴巴拉分校材料研讨会,加利福尼亚州圣巴巴拉 106. “纳米粒子超晶格组装:经典晶体结构,但非常规生长模式” 2023 ,卡弗里理论物理研究所,加利福尼亚州圣巴巴拉 105. “DNA 编程组装:结构-特性开发和设备制造” 2023 ,ACS 春季会议,印第安纳波利斯,印第安纳州 104. “由纳米粒子超晶格组装的宏观材料” 2023 ,ACS 春季会议,印第安纳波利斯,印第安纳州 103. “由纳米粒子超晶格组装的宏观材料” 2023 ,普渡大学,印第安纳州西拉斐特 102. “利用超分子控制组装合成聚合物纳米复合材料” 2023 年,麻省理工学院化学研讨会系列,马萨诸塞州剑桥 101. “由纳米粒子超晶格组装的宏观材料” 2022 年,太平洋聚合物会议,澳大利亚布里斯班 100. “化学物质何时成为材料” 2022 年,麻省理工学院 DMSE 研讨会系列,马萨诸塞州剑桥 99. “由纳米粒子超晶格组装的宏观材料” 2022 年,天普大学化学系研讨会系列,宾夕法尼亚州费城 98. “由纳米粒子超晶格组装的宏观材料” 2022 年,德克萨斯大学奥斯汀分校化学系研讨会系列,德克萨斯州奥斯汀 97. “由纳米粒子超晶格组装的宏观材料” 2022 年,印第安纳州普渡大学印第安纳波利斯分校化学系研讨会系列,印第安纳波利斯,印第安纳州 96. “由纳米粒子超晶格组装的宏观材料” 2022,印第安纳大学布卢明顿分校化学系研讨会系列,印第安纳州布卢明顿
简介表皮生长因子受体 (EGFR) 的酪氨酸激酶抑制剂 (TKI) 作为一线疗法在治疗 EGFR 突变型肺癌患者时已显示出生存改善。厄洛替尼是一种 EGFR TKI,也是全球首个获批的针对局部晚期或转移性非小细胞肺癌 (NSCLC) 的靶向治疗药物 (1, 2)。在携带致敏 EGFR 突变的 NSCLC 患者中,EGFR TKI 治疗的反应率为 60%–80% (3–5)。这使得相当一部分癌症对治疗无反应,因此前瞻性地确定 EGFR TKI 反应和耐药的预测因子在临床上非常重要。作为常规临床程序,H&E 染色的病理组织切片可以高分辨率提供详细的肿瘤形态学特征。多项研究已经探讨了临床定义的病理亚型与靶向治疗反应之间的关系。Kim 等人报告称,在肺腺癌 (LUAD) 患者中,主要的乳头状亚型可预测 EGFR TKI 敏感性 (6);Miller 等人报告称,支气管肺泡病理亚型(可能代表当今几种不同的生长模式)与 EGFR TKI 相关
青少年进入青春期后,身体化学成分会发生变化,这会影响他们所需的睡眠量和身体告诉他们睡觉的时间。他们的生物钟会发生变化,因此他们入睡较晚,通常在晚上 11 点以后,并且可以轻松睡 12 个小时。在此期间,他们的身体会释放生长所需的激素。高达 80% 的生长激素是在睡眠期间释放的。青少年醒来时通常非常饥饿。这非常类似于小婴儿,他们一夜睡了很长时间,醒来时会非常饥饿。大多数关于青少年睡眠习惯的建议都建议合理的就寝时间,并考虑到他们生物钟的变化。睡前常规很有用,尤其是在他们需要起床上学或上大学的工作日。常规应避免刺激身体的活动,例如玩电脑游戏或喝含有刺激性咖啡因的饮料,如咖啡或碳酸饮料。在工作日和周末约定一个固定的起床时间也很有帮助,而且起床时间不要太早或太晚。随着青少年的生长模式开始减缓,这种睡眠模式在青春期后期再次发生变化。青少年的荷尔蒙再次重新设定他们的生物钟,使他们开始需要更少的睡眠,并且更容易入睡和早起。
摘要:越来越多的二级代谢产物的隔离和鉴定具有独特的骨骼,并具有来自海洋微生物的多种生物活性,从而赢得了许多天然产物化学家的利益。越来越强调如何培养微生物以增强代谢物的化学多样性并避免重新发现已知的化学物质。鉴于次生代谢产物作为微生物之间的交流方式的重要性,已经引入了微生物共培养。通过模仿自然栖息地中微生物群落的生长模式,预计共培养策略可以刺激在传统的实验室培养条件下保持休眠状态的生物合成基因簇,从而诱导新的二级代谢产物的产生。与以前的评论不同,主要关注发酵条件或来自海洋衍生的共同生产菌株的代谢物多样性,涵盖了从20122年到2022年的海洋来源的共培养微生物,并转向特定的讨论,突出了针对海洋衍生的微生物的选择,尤其是在选择的途径,尤其是在海上衍生的疾病。为了方便而快速检测新型代谢物,因为这些代谢物在共培养中很重要。最后,还讨论了分子的结构和生物活性多样性。对作者的观点的行为讨论了共同文化的挑战和前景。
摘要 — 准确的新生儿脑部 MRI 分割对于研究脑部生长模式和追踪神经发育障碍的进展非常有价值。然而,使用基于强度的方法来分割新生儿脑结构是一项具有挑战性的任务,因为固有的髓鞘形成过程导致脑区之间的对比度差异很小。尽管卷积神经网络提供了以强度无关的方式分割脑结构的潜力,但它们缺乏分割所必需的平面内长距离依赖性。为了解决这个问题,我们提出了一种新颖的 Transformer 加权网络 (TW-Net) 来整合平面内长距离依赖信息。TW-Net 采用传统的编码器-解码器架构,中间有一个 Transformer 模块。Transformer 模块使用旋转和翻转层来更好地计算切片中两个斑块之间的相似性,以利用脑结构内相似的几何和纹理特征模式。此外,还引入了深度监督模块和挤压和激励块来整合脑结构的边界信息。与最先进的深度学习算法相比,TW-Net 在两个独立的公共数据集上 2D 和 2.5D 配置的多标签任务中表现优于这些方法,表明 TW-Net 是一种很有前途的新生儿脑部 MRI 分割方法。
摘要:黑色素瘤具有侵袭性转移性生长模式,是最具侵袭性的皮肤癌类型之一。据估计,2021 年仅在美国就有 7180 人死于黑色素瘤。一旦黑色素瘤转移,传统疗法就不再有效。相反,免疫疗法(如伊匹单抗、派姆单抗和纳武单抗)是恶性黑色素瘤的治疗选择。几种与肿瘤发生有关的生物标志物已被确定为分子靶向黑色素瘤治疗的潜在靶点,例如酪氨酸激酶抑制剂 (TKI)。不幸的是,黑色素瘤很快就会对这些分子靶向疗法产生耐药性。为了绕过耐药性,已经采用了免疫疗法和一种或多种 TKI 的联合治疗,并且与单一疗法相比,已证明可以改善黑色素瘤患者的预后。本综述讨论了几种针对黑色素瘤生物标志物的联合疗法,例如 BRAF、MEK、RAS、c-KIT、VEGFR、c-MET 和 PI3K。其中一些方案已获得 FDA 批准用于治疗转移性黑色素瘤,而其他方案仍处于临床试验阶段。继续研究耐药性的原因和影响这些联合治疗效果的因素,例如致癌蛋白中的特定突变,可能会进一步提高联合疗法的有效性,为黑色素瘤患者提供更好的预后。
单个年龄的抽象确定是对鱼类种群进行准确评估的重要一步。在非热带环境中,鱼耳石(耳石)中环状生长模式的手动计数是标准方法。它依赖于视觉手段和个人判断,因此受到偏见和解释错误的影响。基于机器学习的自动模式识别的使用可能有助于克服此问题。在这里,我们采用了两种基于卷积神经网络(CNN)的深度学习方法。第一种方法利用蒙版R-CNN算法在主要的耳石读数轴上执行对象检测。第二种方法采用U-NET体系结构对耳石图像进行语义分割,以隔离感兴趣的区域。对于这两种方法,我们都应用了一个简单的后处理来计算返回的输出掩码上的环,这与年龄预测相对应。多个基准测试表明我们实施方法的有希望的性能,可与基于经典图像处理和传统CNN实现的最近发布的方法相媲美。此外,与现有方法相比,我们的算法表现出更高的鲁棒性,同时还具有推断缺失的年龄组并适应新域或数据源的能力。关键词:鱼年龄读数;自动化;深度学习;对象检测;分段
大型有机铵离子的掺入使卤化物钙钛矿复合物的结晶动力学和层形成过程,难以控制,并导致抑制电荷转运的问题,并形成很小的晶粒。在本文中,在前体溶液中引入了氯化甲基(MACL)和过量的PBI 2作为共同辅助剂,以控制苯基甲基铵或苯甲酰胺或苯甲酰胺(PMA + SPACER)(PMA + SPACER)和基于基于fa +)基于fa +)的Quasi-2d pma 2d pma + 1 pba n i i。钙钛矿层的形成。通过这种方法,层的形态,内相分布和电荷传输特性得到改善。采用光泽放电光学光谱(GD-OES)和其他技术,据揭示了在共同添加剂存在下制备的准2D perovskites在整个过程中表现出均匀的溶剂清除动力学。此外,在热退火时,晶粒生长模式是侧向的。它产生了具有低陷阱状态密度和出色的底物覆盖率的大型,整体晶粒。尤其是,共同添加剂在结晶过程上改善了阳离子的分散,从而抑制了通过间隔阳离子的聚集形成的低N相并加速了高N期的形成。