摘要 我们提出了一种基于液滴的微流体系统,该系统可在芯片上实现基于 CRISPR 的基因编辑和高通量筛选。微流体装置包含一个 10 × 10 元件阵列,每个元件包含用于两个电场驱动操作的电极组:用于合并液滴以混合试剂的电润湿和用于转化的电穿孔。该装置可以并行执行多达 100 个基因改造反应,为生成遗传途径组合优化和可预测生物工程所需的大量工程菌株提供了一个可扩展的平台。我们通过基于 CRISPR 的两个测试案例的工程改造展示了该系统的能力:(1)破坏大肠杆菌中酶半乳糖激酶(galK)的功能;(2)靶向改造谷氨酰胺合成酶基因(glnA)和蓝色色素合成酶基因(bpsA),以提高大肠杆菌中的靛蓝素产量。
基于 CRISPR 的基因组编辑技术的出现彻底改变了分子生物学,为操纵遗传物质提供了无与伦比的精度。这项变革性技术为医学、农业和生物技术的突破铺平了道路。然而,CRISPR 的全部潜力仍然受到一个关键瓶颈的限制:将其成分有效地递送到靶细胞。脱靶效应、免疫原性和有限的组织特异性等挑战继续阻碍其从实验室到临床的转化。1 为了克服这些障碍,研究人员现在正在探索纳米封装作为优化 CRISPR 递送的下一代策略。2 CRISPR 递送传统上依赖于病毒载体、化学转染(脂质转染)和物理方法,如电穿孔/核转染和微注射。3 虽然病毒载体效率很高,但它们的使用受到免疫原性、尺寸限制和插入诱变风险的限制。脂质转染使用
酶学与酶技术:酶的定义、酶学与酶技术、酶的性质、酶的应用、酶的生产技术、酶的固定化。单元 4:重组 DNA 技术:重组 DNA 的概念、重组 DNA 技术的生物工具、基因的修饰、基因转移的方法、转基因生物。单元 5:DNA 结构与操作 - DNA 分离与纯化技术。DNA 样本的定量与表征方法。RNA 分析与基因表达 - RNA 分离与纯化方法。基因表达分析。单元 6:基因操作技术 - 基因传递方法。物理、化学和生物方法。转化、转染、电穿孔和微注射。细菌和真核生物的基因敲除技术。单元 7:基因组编辑 - 基因组编辑技术简介 - 基因组编辑技术的原理与应用。CRISPR-Cas9、定点诱变和其他基因组编辑方法。
DNA 引导的 RNA 引导内切酶 (dRGEN) 是高效、经济且方便的基因组编辑实验工具。AccuTool™ dRGEN 可识别长度为 23 bp 并以两个鸟嘌呤 (GG) 结尾的目标序列。定制 sgRNA 表达质粒可与 Cas9 表达质粒(人类密码子优化,WT/Nickase/Sniper 形式可用)一起使用。质粒可以通过任何标准方法(如脂质转染、纳米颗粒或电穿孔)递送到您感兴趣的细胞中,以实现高效递送。sgRNA-GFP 表达质粒是通过将 GFP 构建体插入现有 sgRNA 质粒中构建的。sgRNA-GFP 表达质粒可让您通过荧光显微镜确认细胞中的活性水平。 AccuTool™ dRGEN 是一种定制设计的 sgRNA,以 sgRNA 表达质粒或 sgRNA-GFP 表达质粒的形式提供。应用
实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
简单摘要:基因组编辑是一种众所周知的方法,用于将靶向遗传替代物引入牲畜基因组中。这些变化必须在种系中转移,才能有效地在动物繁殖中。传递CRISPR-CAS9成分的常规方法,例如合子中的微注射或编辑体细胞,然后进行体细胞核转移(SCNT),在包括小鼠和某些家畜在内的各种物种中都取得了成功。但是,这些方法通常是劳动密集型的,技术要求的,并且与可变效率相关。电穿孔是一种最近描述的将Cas9和sgrnas交付到Zygotes中的方法,因为它需要比微注射较低的设备便宜,并且需要更少的时间。在本研究中,我们开发了一种称为合子(CRISPR-EP)CRISPR RNP电穿孔的有效方法,以降低镶嵌率并增加水牛的双重突变。开发的基因编辑的简单简单方案可以作为研究水牛胚胎的功能基因组学的有用方法。
为了提高农作物的产量、抗旱性、抗虫性和营养价值等,现代农业依赖于植物基因工程。自从重组 DNA 技术问世以来,人们已经利用多种工具对植物进行基因转化,例如农杆菌、病毒介导的基因转移、直接基因转移系统(例如电穿孔、粒子枪、显微注射和化学方法)。所有这些传统方法都缺乏特异性,转基因被整合到植物 DNA 的随机位点。最近,出现了新的基因靶向技术,例如工程核酸酶(例如锌指核酸酶)、转录激活因子样效应核酸酶、成簇的规则间隔短回文重复序列。其他进展包括用于递送基因编辑组件的工具的改进,这些组件包括载体蛋白和碳纳米管。本综述重点介绍植物中靶向特异性基因递送的最新技术、它们的表达以及植物生物技术的未来方向。
摘要:特异性抗体对于蛋白质复合物的细胞和组织表达、生化和功能分析必不可少。然而,制备特异性抗体通常费时费力。将内源性蛋白质的表位标记在适当的位置可以克服这个问题。在这里,我们使用 AlphaFold2 蛋白质结构预测研究了表位标签位置,并结合 CRISPR-Cas9 基因组编辑和电穿孔 (i-GONAD) 开发了 Flag/DYKDDDDK 标签敲入 CaMKII α 和 CaMKII β 小鼠。使用 i-GONAD,可以将长达 200 bp 的小片段插入目标基因的基因组中,从而实现高效便捷的小表位标记。使用市售的抗 Flag 抗体进行实验,可以通过蛋白质印迹、免疫沉淀和免疫组织化学轻松检测内源性 CaMKII α 和 β 蛋白。我们的数据表明,通过 i-GONAD 生成 Flag/DYKDDDDK 标签敲入小鼠是一种有用且方便的选择,特别是在没有特定抗体的情况下。
我们进行了一系列体外测试,以确定外源性 TGFβ 是否能对针对两种不同肿瘤抗原的 CAR T 细胞产生抑制作用。IVT 电穿孔 iDC(CLDN6/MSLN)与 CAR CLDN6 或 CAR MSLN T 细胞在增加 TGFβ 剂量的情况下共培养。添加的多种外源性 TGFβ(5-20 ng/ml)可显著抑制 CAR T 细胞在细胞因子分泌(图 2A)和增殖(图 2B)方面的功能,这与之前的报告一致。IFN-γ(最主要的免疫刺激性 T 细胞因子)的分泌非常容易受到即使添加的最低剂量 TGFβ 的影响,在没有 TGFβ 的情况下,IFN-γ 分泌会下降到不到 40%与此一致,即使在存在非常低剂量的 TGFβ(5ng/ml)的情况下,MSLN 和 CLDN6 特异性 CAR T 细胞的增殖也会降低到其天然增殖的 50% 以下(即不存在 TGFβ)。
自然杀伤 (NK) 细胞是先天淋巴细胞,参与针对病毒感染细胞和肿瘤的免疫反应 [1]。NK 细胞的功能可通过过继转移用于治疗,这是一种很有前途的癌症治疗选择 [2, 3]。我们对 NK 细胞如何感知周围环境、识别异常细胞和整合受体输入的理解已经取得了长足的进步 [4–6]。然而,产生和维持其功能能力的分子网络仍未完全了解,阐明 NK 细胞内在调控网络有望改善 NK 细胞治疗。通过电穿孔、脂质转染或病毒转导对 NK 细胞进行遗传操作受到传递效率不稳定和活力受损的限制(详见 [7])。已描述了使用 CRISPR/Cas9 进行 NK 细胞基因工程的效率,范围从 24% 到 90% [8–10],并且此类方法通常包括体外强力激活,从而排除了对仅在激活前表达或在激活后动态调节的基因的研究。RNA 干扰介导的基因表达敲低是一种有价值的