在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
© 2019 年由 Elsevier 出版。本稿件根据 Elsevier 用户许可证提供 https://www.elsevier.com/open-access/userlicense/1.0/
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。
PIN 型结构中的薄(尽管有吸收性)N 型界面(例如 C 60 层)似乎确实比标准结构中通常使用的厚的高吸收性 HTL(例如 spiro-OMeTAD)的光学危害更小。14 因此,为了开发高性能串联电池,似乎有必要优化具有 PIN 型结构的半透明 PSC 单结。这种类型的电池逐渐得到更多研究,效率也相应提高到 17%。16–21 性能主要取决于用作活性层和界面层的材料。这些架构的主要缺点是由于使用了不合适的 N 型和 P 型界面层,导致 V oc 值较低。这会阻止钙钛矿层的最佳运行并有利于辐射复合。22
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
可扩展的超高功率锂离子存储的石墨烯间种子层的多层打印Sang ho lee*,Colin Johnston和Patrick S. Grant S. Li 4 Ti 5 O 12,多层,喷雾打印,锂离子电容器一个低电阻石墨烯的界面层是针对多层锂离子
图 1:kMC 模拟结束时气体种类 (a, b) 和 SEI 产物 (c, d) 的平均分数随施加电位的变化。模拟是在两种条件下进行的,反映了 SEI 形成的不同方式。为了模拟在靠近负极处形成 SEI 的情况,在形成显著的界面层 (a, c) 之前,允许在没有隧道势垒的情况下进行还原 (D = 0 . 0 ˚ A)。由于电极很可能在高施加电位下被覆盖,因此在实际电池环境中可能无法进入低电位区域 (低于 +0.5V vs Li/Li + 的施加电位)。因此,该区域已被阴影化。为了模拟远离负极处形成 SEI (b, d) 的情况,在存在部分电子绝缘的界面层的情况下,相对较厚的隧道势垒 (D = 10 . 0 ˚ A) 减缓了还原速度。提供了表示平均值标准误差的误差线,但通常太小而无法看到。
更广泛的上下文稳定和成本效率的Li-Metal电池(四肢)对于非额外的商业电池能量密度不适。然而,使用常规电解质时,Li-i-Metal阳极的实施会阻碍低周期的寿命和安全性。尤其是,在骑自行车期间发生电子活动“死”锂和树突的形成。先前的研究表明,富含氟的界面层化学对于Li-o-亚属阳极的稳定很重要,当使用高分氟化溶剂和/或盐时,这可以实现。在本文中,我们引入了一种替代方法,该方法利用带正电的氟化阳离子和带负电荷的Li-metal阳极之间的静电吸引力,在电极表面附近产生了大量的氟化物种,在电解质中具有非常低的添加剂(B 0.1 wt%)。结果,形成了富含氟的富含荧光界面层,从而实现了密集的Li金属的无树枝沉积。通常,我们提出了一种通过静电吸引力将所需的化学物种运送到电池阳极的策略,同时使用微量的添加剂,因此可以显着降低实施高能量电池的成本和环境足迹。
作为下一代电池,全稳态电池(ASSB)吸引了广泛的关注。通常,ASSB包括无机固体电解电池,聚合物固体电解电池,复合聚合物/陶瓷固体电解电池等。但是,在Assb的设计和制造中仍然存在令人生畏的挑战。ASSB的最大挑战是接口问题,这导致ASB的容量,骑自行车和速率表现远低于传统LIB的能力。通常,界面问题非常复杂,可以在[24]中找到详细的讨论。图2(b)显示了ASSB的典型接口问题[25]。通常,空间电荷层和界面层会导致较大的界面阻抗,从而降低反应动力学并限制电池的性能。此外,充电和放电将进一步加剧接口问题。在