在过去的十年中,非病毒DNA模板递送已与工程核酸酶一起使用,以靶向造血茎和祖细胞中的单链DNA序列。虽然对基因治疗有效,但该方法仅限于简短的DNA供体模板,从而限制了其对基因矫正的应用。为了扩大其范围,我们使用千层长的圆形单链DNA供体模板和TALEN技术开发了一个编辑过程。我们的结果表明,CSSDNA编辑过程可在可行的HSPC中实现高基因插入频率。与常规的AAV编辑过程相比,CSSDNA编辑的HSPC显示出更高的植入和维持鼠模型中基因编辑的倾向。这种积极的结果部分是由于较高水平的原始编辑的HSPC,更静止的代谢状态以及骨髓粘附标记的表达升高。我们的发现突出了CSSDNA作为基因治疗应用的通用和有效的非病毒DNA模板的强大潜力。
尽管最近在提高慢病毒基因疗法的疗效方面取得了进展,但相当一部分生产的载体含有不完整且可能无功能的 RNA 基因组。这可能会破坏慢病毒的基因传递,并增加制造成本,必须加以改进以促进慢病毒基因疗法的广泛临床实施。在这里,我们比较了三种长读测序技术检测载体设计问题的能力,并确定纳米孔直接 RNA 测序是最强大的。我们展示了这种方法如何识别和量化由隐蔽剪接和多聚腺苷酸化位点引起的不完整 RNA,包括广泛使用的土拨鼠肝炎病毒转录后调控元件 (WPRE) 中的潜在隐蔽多聚腺苷酸化位点。使用慢病毒 RNA 的人工多聚腺苷酸化,我们还在分析的慢病毒载体中识别出多个发夹相关截断,这些截断占检测到的 RNA 片段的大部分。最后,我们表明这些见解可用于优化慢病毒载体设计。总之,纳米孔直接 RNA 测序是慢病毒载体质量控制和优化的有力工具,可能有助于改进慢病毒制造,从而开发更高质量的慢病毒基因疗法。
* 通讯作者:Serge Mignani,巴黎笛卡尔大学,巴黎西岱大学 PRES Sorbonne,CNRS UMR 860,化学、生物化学、药理学和毒理学实验室,45, rue des Saints Peres,75006 巴黎,法国; CQM-马德拉化学中心、MMRG、马德拉大学、Penteada 校区、9020-105 丰沙尔、葡萄牙。 serge.mignani@staff.uma.pt;石向阳,CQM-马德拉化学中心,MMRG,马德拉大学,Penteada 校区,9020-105 丰沙尔,葡萄牙;东华大学化工与生物技术学院,上海 201620。 xshi@dhu.edu.cn; Jean-Pierre Majoral,CNRS 协调化学实验室,205 route de Narbonne,31077 图卢兹,Cedex 4,法国;图卢兹大学,118 route de Narbonne,31077 图卢兹,Cedex 4,法国。 majoral@lcc-toulouse.fr 学术编辑:丁建勋,中国科学院长春应用化学研究所
**评估来自Werle等。al。,“分析技术的比较,以量化与腺相关病毒载体的衣壳含量的比较”(2021)和Gimpel等。al。,“重组腺相关病毒基因疗法的过程和产品表征的分析方法”(2021)。
最初发表于:Jetzer, Tania;Studer, Luka;Bieri, Manuela;Greber, Urs;Hemmi, Silvio (2023)。B 和 C 类工程化人类腺病毒报告了早期、中早期和晚期病毒基因表达。《人类基因治疗》,34(23- 24):1230-1247。DOI:https://doi.org/10.1089/hum.2023.121
慢病毒 (LV) 具有广泛的应用,常用于临床基因治疗以及 CAR-T 细胞工程。该过程可能繁琐而复杂,但慢病毒载体与传统逆转录病毒基因递送系统相比具有一系列独特优势。这五个步骤对于生产慢病毒以增强您的下游研究至关重要。
基因疗法已成为治疗几种可怕和罕见疾病的潜在平台,而这些疾病是传统疗法无法实现的。病毒载体已被广泛探索为基因治疗的关键平台,因为它们能够有效地将基于核酸的治疗剂运送到细胞中。然而,它们在递送过程中缺乏精确度,导致了一些脱靶毒性。因此,人们已经探索了各种非病毒基因递送载体形式的策略,目前已在包括 SARS-CoV-2 疫苗在内的几种疗法中使用。在这篇综述中,我们讨论了脂质纳米颗粒 (LNP) 为有效基因递送提供的机会。我们还讨论了通过微流控技术高通量制造非病毒基因递送载体的各种合成策略。我们最后介绍了这些载体在递送不同遗传物质(如 CRISPR 编辑器和 RNA)方面的最新应用和临床试验,用于治疗从癌症到罕见疾病的不同医疗状况。 2022 由 Elsevier BV 出版 这是一篇根据 CC BY 许可 ( http://creative-commons.org/licenses/by/4.0/ ) 的开放获取文章。
在基因组医学时代,罕见的儿童神经系统疾病的诊断率正在上升。许多疾病无法治愈且会限制生命,这导致基因治疗的发展异常增长。预计到 2025 年,将有 20 种基因治疗产品获得美国食品药品监督管理局的批准。以病毒基因疗法为例,它被认为是 1 型脊髓性肌萎缩症患者的潜在单剂量治愈方法,同时却导致 2020 年三名患有 X 连锁肌管性肌病的男孩在接受高剂量基因治疗后死亡,那么基因治疗的现状如何?几十年来病毒基因治疗被大肆宣传的背后是什么?它是否影响巨大,但风险也很大?在这篇综述中,我们概述了病毒基因治疗的发展原则,并总结了基因治疗对儿童神经系统疾病治疗效果的最新临床证据。我们讨论了腺相关病毒和慢病毒载体、反义寡核苷酸、新兴的基因编辑方法以及该领域目前仍然面临的局限性。
*对于在过去5-42天内用麻疹疫苗免疫的可疑麻疹的个体,需要麻疹病毒基因分型才能区分野生型与疫苗相关的麻疹。基因分型需要收集NAAT(PCR)PHO实验室标本,将在所有阳性样品上实施麻疹疫苗基因型PCR,以区分疫苗菌株。与疫苗相关的麻疹疾病(基因型A)不可报告,应报告为免疫后的不良事件(AEFI)。