β-Mercaptoethanol PanReac-AppliChem A4338,0100 Sodium chloride (NaCl) PanReac-AppliChem 131659.1211 Tryptone Condalab 1612 Yeast Extract Condalab 1702 Bacteriological Agar Condalab 1800 Agarose D1 Medium EEO Condalab 8019 Liquid nitrogen n/a n/a Critical commercial assays NEBuilder® HiFi DNA Assembly Master Mix New England Biolabs E2621S Phusion TM High-fidelity DNA polymerase Thermo Fisher Scientific F530S MluI (10 U/µL) Thermo Fisher Scientific ER0561 BsaIHF®v2 (20 U/µL) New England Biolabs R3733S DNA Clean & Concentrator TM -5 Zymo研究D4004Nucleospin®质粒DNA纯化机构 - 纳格尔740588.250 Ribolock RNase抑制剂(40 u/μl)Thermo Fisher Scientific EO0381恢复TM逆转录(TM)逆转录酶Thero Fisher Fisher Fisher Scientific EP0441 Therus prolainsir prolapers themophirs dna Polymsisriast dna Polymsiss dna Prolymasse:003 3.003.003 3.003 3.003 3.003 3.003 3.003 3.003; 003 3.003 3.003 Nicotiana Benthamiana cas9(Bernabé-ortts等,2019)N/A寡核苷酸D2409 atttatattattAttCataCaatCaaAcc
抽象背景人类免疫细胞,包括单核细胞衍生的巨噬细胞,可以设计用于提供促炎性细胞因子,双特异性抗体和嵌合抗原受体,以支持不同疾病环境中的免疫反应。当基因表达受组成型活性启动子调节时,慢病毒有效载荷基因表达不受管制,并且可能导致潜在的毒素含量。慢病毒编码蛋白的调节递送可能允许局部或有条件的治疗蛋白表达,以支持安全传递的,具有降低全身毒性能力的传递转移的转基因细胞。在这项研究中,我们设计了人类巨噬细胞,以表达慢病毒启动子区域中的缺氧反应元件调节的基因,以驱动仅在低氧条件下驱动有条件的慢病毒基因表达。我们测试了在缺氧条件下培养的转导的巨噬细胞,用于瞬时诱导的报告基因的表达和分泌的细胞因子Interleukin-12。在切片培养系统中,在转录和翻译中都研究了低氧调节基因的表达。最后,在皮下人性化小鼠癌症模型中评估了缺氧调节的基因表达。结果的巨噬细胞显示出有条件的和三局的慢病毒编码基因蛋白产物,包括在体外缺氧条件下IL-12。返回到常氧条件后,慢病毒有效载荷表达式返回到基础水平。报告基因在缺氧条件下上调,这表明对癌症中局部基因递送的全身工程细胞递送的实用性。结论是为表达缺氧调节的有效载荷设计的巨噬细胞的潜力,有可能在患有缺氧条件的组织中系统地和有条件地表达蛋白质。与在缺氧条件下起作用或生存不佳的免疫细胞相反,巨噬细胞保持促炎的表型,当通过条件性缺氧反应性元素调节并自然访问低氧微型环境时,可能支持持续的基因和蛋白质表达
朊病毒病是一组致命的神经退行性疾病,包括影响鹿科动物且传染性极强的慢性消耗性疾病。鉴于慢性消耗性疾病在北美某些流行地区的患病率超过 30%,并且不能排除最终会传播给其他哺乳动物物种(可能包括人类),因此必须研究除通过狩猎和/或扑杀进行种群管理之外的新控制策略。朊病毒病依赖于 Prnp 基因编码的细胞朊病毒蛋白的翻译后转化为与疾病相关的构象;消除细胞朊病毒蛋白的表达(通常耐受性良好)可完全消除朊病毒病的易感性。受到笼养蚊子物种中基因驱动演示的启发,我们旨在测试基于 CRISPR/Cas9 的基因驱动机制是否原则上可以促进无效 Prnp 等位基因在哺乳动物种群中的传播。首先,我们表明,在 RK13 细胞中,Cas9 和 Prnp 定向向导 RNA 的瞬时共表达会在 Prnp 开放阅读框内产生插入/缺失,表明 Cas9 诱导的双链断裂已通过非同源末端连接进行修复。其次,我们通过 Cas9 诱导的切割后的同源定向修复将约 1.2 kb 的供体 DNA 序列整合到 N2a 细胞的 Prnp 开放阅读框中,并证实整合在大多数情况下都准确发生。第三,我们证明,将 Cas9/向导 RNA 核糖核蛋白复合物电穿孔到受精小鼠卵母细胞中,可产生具有各种 Prnp 开放阅读框中断的幼崽,并在这项研究中获得了新的 Prnp 基因缺失小鼠同源系。然而,在雄性生殖系中获得 Cas9 表达的技术挑战阻碍了在小鼠中实现完整的基因驱动机制。
* 通讯作者:Serge Mignani,巴黎笛卡尔大学,巴黎西岱大学 PRES Sorbonne,CNRS UMR 860,化学、生物化学、药理学和毒理学实验室,45, rue des Saints Peres,75006 巴黎,法国; CQM-马德拉化学中心、MMRG、马德拉大学、Penteada 校区、9020-105 丰沙尔、葡萄牙。 serge.mignani@staff.uma.pt;石向阳,CQM-马德拉化学中心,MMRG,马德拉大学,Penteada 校区,9020-105 丰沙尔,葡萄牙;东华大学化工与生物技术学院,上海 201620。 xshi@dhu.edu.cn; Jean-Pierre Majoral,CNRS 协调化学实验室,205 route de Narbonne,31077 图卢兹,Cedex 4,法国;图卢兹大学,118 route de Narbonne,31077 图卢兹,Cedex 4,法国。 majoral@lcc-toulouse.fr 学术编辑:丁建勋,中国科学院长春应用化学研究所
开发载体 在项目开始时,Moosajee 教授的团队已经为 USH2A 开发了几种 S/MAR 载体原型。由于基因太长,这一过程非常具有挑战性,但团队最终通过将基因打碎成碎片,然后像拼图一样将它们一个接一个地插入包装中实现了这一目标。然而,在校对包装后的 USH2A 的整个基因序列时,研究人员发现了一个字母的拼写错误。他们现已纠正这个问题,并能够确认他们已成功将正确的 USH2A 序列插入 S/MAR 载体中。他们还加入了各种特殊信号(称为启动子),这些信号可以促使基因在大多数细胞或特别是在视网膜细胞中开启。载体本身是该项目的一个重要成果,现在可用于未来的研究和模型系统中的测试。
* 通讯作者 8 9 10 摘要 11 病毒是影响所有生命的多样化生物实体。即使基因组 12 大小有限,病毒也能操纵、驱动、窃取和杀死宿主。病毒基因组学领域利用测序数据来了解病毒的能力,近 14 年来取得了重大创新。然而,随着宏基因组测序和相关技术的进步,发现和利用病毒圈的瓶颈已成为基因组分析,而不是生成。随着宏基因组学迅速扩大可用数据,病毒基因组和特征的重要组成部分被忽视,而数据库和生物信息学方法的滞后加剧了这一问题。尽管该领域正朝着积极的方向发展,但仍有值得注意的 19 点需要牢记,从如何解释基于软件的病毒基因组预测到当前标准忽略了哪些信息。在这篇评论中,我们讨论了在继续进行病毒基因组学研究时可能需要修改的惯例和意识形态。 22 23 简介 24 用于研究病毒(感染真核生物和古细菌)和噬菌体(噬菌体;感染细菌的病毒)的基因组学方法在过去几年中迅速发展,这在很大程度上归功于我们能够从宏基因组中理解和解释病毒基因组。事实上,在过去几年中,经常可以找到描述环境病毒基因组学的出版物,这些出版物表明病毒是地球上最丰富和最多样化的生物实体。作为科学界,我们认识到病毒在所有生命存在的环境中留下的广泛足迹。例如,通过研究病毒基因组,我们发现了病毒编码的代谢基因,如光合作用和硫氧化基因,并推断出病毒指导的代谢对各种生物地球化学过程的影响[1-8]。研究病毒基因组还有助于创新基于 CRISPR 的新型基因组编辑技术[9-11]、进一步开发噬菌体治疗应用[12,13]、更广泛地了解人类肠道菌群失调[14-16]等等。病毒和噬菌体在我们的日常生活中看不见,但它们通过操纵和/或裂解宿主,不断改变着我们周围的地球[17]。不幸的是,估计存在的所有病毒中,只有一小部分是在实验室中培养的。这引起了人们对利用新一代测序和宏基因组学进行分类、探索和分析的极大兴趣。
G-Rex生物反应器中Tcbuster编辑的细胞的转置和膨胀速率。越来越多的细胞(1x10 7、8x10 7和40x10 7)被电穿孔引入TCBUSTER,然后分别播种到小,中和大规模的G-Rex生物反应器中,以进行膨胀。tcbuster成功地转移了效率> 30%的细胞,并在G-Rex中导致25、50和38倍的膨胀。
对于大多数病毒来说,这种识别所需的信息目前还没有,而且与 RNA 结构结合的药物晶体结构很少(并且不一定具有代表性);迫切需要在分子水平上重新认识这种结合。RNA 分子固有的灵活性使 RNA 结构研究变得更加复杂,这需要了解它们的动力学而不仅仅是它们的基态构象。因此,简单的分子对接是不够的;相反,分子动力学可以潜在地探测能量图和结构灵活性。在这里,我们首次采用分子动力学详细探索纳米级药物插入病毒 RNA UTR 凸起部分,复制实验观察结果并对 RNA 动力学和药物进入过程获得全新的认识;这为设计新型 UTR 结构靶向药物提供了重要信息。所研究的纳米级药物是超分子圆柱体,它不仅具有前所未有的 RNA 凸起结合能力,而且是金属超分子结构中第一个在细胞测定中表现出强效抗病毒活性的药物。35 人们对金属超分子结构在生物学中的应用越来越感兴趣。36 – 41
荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,钱琳,孙杰教授 浙江大学医学院附属第一医院细胞生物学系和骨髓移植中心 杭州 310058,中国 电子邮件:sunj4@zju.edu.cn 荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,钱琳,孙杰教授 浙江大学血液学研究所 & 浙江省干细胞与免疫治疗工程实验室 杭州 310058,中国 荆瑞平,焦佩玲,陈建军,孟晓燕博士,吴晓,段永刚博士,尚凯,孙杰教授 浙江省系统与精准医学实验室 浙江大学医学中心 杭州 310058,中国 黄勇,高晓燕教授浙江省西湖大学生命科学学院杭州 310058 刘菁,尹文教授浙江大学生物医学工程与仪器科学学院生物医学工程教育部重点实验室杭州 310058