第三版的目标与早期版本基本相同,即介绍概率论在信号与系统分析中出现的问题的解决方案,适合大三或大四的工程专业学生。但是,它也可以作为研究生和工程师对他们以前在广泛分布的资料中遇到的材料的简明回顾。此版在几个方面与第一版和第二版不同。在此版中,文本示例和选定问题都介绍了计算机的使用。计算机示例是使用 MATLAB 1 进行的,问题可以使用 MATLAB 学生版以及其他计算机数学应用程序处理。此外。介绍了计算机在解决涉及统计和随机过程的问题中的应用。还进行了其他更改。特别是,增加了许多新章节,几乎所有练习都进行了修改或更改,修改了许多问题,并增加了许多新问题。由于这是一本工程教材,因此处理方式是启发式的,而不是严格的,学生会发现许多将这些概念应用于工程问题的例子。但是,它并非完全没有数学上的微妙之处,并且已经投入了大量精力来指出一些困难,如果要掌握它,就必须对这门学科进行更深入的研究。作者认为,反复接触困难的主题对教育过程最有帮助;本书旨在成为对概率和随机过程的第一次接触,我们希望这不是最后一次。这本书并不全面,而是有选择地涉及作者认为在解决工程问题中最有用的那些主题。简要讨论本书的一些重要特点将有助于为讨论本书的各种用途奠定基础。第 1 章介绍了离散概率的基本概念:首先从相对频率方法的直观角度介绍,然后从更严格的公理概率角度介绍。简单的例子说明了所有这些概念,对工程师来说,它们比从瓮中选择红球和白球的传统例子更有意义。本章的一个重要特点是对第 2 章介绍了随机变量的概念以及概率分布和密度函数、平均值和条件概率的概念。
第三版的目标与早期版本基本相同,即介绍概率论在信号与系统分析中出现的问题的解决方案,适合大三或大四的工程专业学生。但是,它也可以作为研究生和工程师对他们以前在广泛分布的资料中遇到的材料的简明回顾。此版在几个方面与第一版和第二版不同。在此版中,文本示例和选定问题都介绍了计算机的使用。计算机示例是使用 MATLAB 1 进行的,问题可以使用 MATLAB 学生版以及其他计算机数学应用程序处理。此外。介绍了计算机在解决涉及统计和随机过程的问题中的应用。还进行了其他更改。特别是,增加了许多新章节,几乎所有练习都进行了修改或更改,修改了许多问题,并增加了许多新问题。由于这是一本工程教材,因此处理方式是启发式的,而不是严格的,学生会发现许多将这些概念应用于工程问题的例子。但是,它并非完全没有数学上的微妙之处,并且已经投入了大量精力来指出一些困难,如果要掌握它,就必须对这门学科进行更深入的研究。作者认为,反复接触困难的主题对教育过程最有帮助;本书旨在成为对概率和随机过程的第一次接触,我们希望这不是最后一次。这本书并不全面,而是有选择地涉及作者认为在解决工程问题中最有用的那些主题。简要讨论本书的一些重要特点将有助于为讨论本书的各种用途奠定基础。第 1 章介绍了离散概率的基本概念:首先从相对频率方法的直观角度介绍,然后从更严格的公理概率角度介绍。简单的例子说明了所有这些概念,对工程师来说,它们比从瓮中选择红球和白球的传统例子更有意义。本章的一个重要特点是对第 2 章介绍了随机变量的概念以及概率分布和密度函数、平均值和条件概率的概念。
意味着必须满足两个条件:1) 所有概率或概率分布都是已知的或完全可确定的;2) 系统组件是独立的,即描述组件可靠性行为的所有随机变量都是独立的,或者它们的依赖关系是精确已知的。如果满足这两个条件(这里假设系统结构是精确定义的,并且存在一个已知函数将系统故障时间 (TTF) 和组件的 TTF 或某些逻辑系统函数联系起来),那么总是可以(至少在理论上)计算出精确的系统可靠性度量。如果至少违反其中一个条件,则只能获得区间可靠性度量。实际上,很难期望第一个条件得到满足。如果我们掌握的有关组件和系统功能的信息是基于统计分析的,那么应该使用概率不确定性模型来数学表示和处理该信息。但是,用于描述系统和组件的可靠性评估可能来自各种来源。其中一些可能是基于相对频率或完善的统计模型的客观测量。部分可靠性评估可能由专家提供。如果系统是新的或仅作为项目存在,那么通常没有足够的统计数据来作为精确概率分布的基础。即使存在这样的数据,我们也并不总是从统计角度观察它们的稳定性。此外,可能无法准确观察到故障时间,甚至可能错过。有时,故障根本不发生或部分发生,导致对故障时间的观察被审查,而审查机制本身可能很复杂且不准确。因此,可能只有部分关于系统组件可靠性的信息可用,例如,平均故障时间 (MTTF) 或一次故障概率的界限。当然,人们总是可以假设 TTF 具有一定的概率分布,例如指数、威布尔和对数正态分布是流行的选择。但是,如果我们的假设仅基于我们的经验或专家的经验,我们应该如何信任可靠性分析的结果。有人可能会回答说,如果专家根据自己的经验为 MTTF 提供了一个间隔,那么我们为什么要拒绝他对 TTF 概率分布的假设呢?事实是,由于人类评估的精度有限,专家得出的判断通常不准确且不可靠。因此,任何关于某个概率分布的假设,加上专家判断的不准确性,都可能导致错误的结果,而这些结果往往无法验证
气候适应决策可以通过量化当前和未来的气候风险来告知。这对于理解哪些人群和/或基础设施最有风险,以便优先考虑适应性措施。在评估建筑物过热的风险时,许多研究使用先进的建筑模型来全面地表示建筑物对过热的脆弱性,但通常会使用有限的Mete Orological(危险)信息表示,这些信息在太空中并不现实。量化风险的另一种方法是使用空间风险评估框架,该框架结合了有关危害,暴露和脆弱性以空间一致的方式估算风险的形成,从而可以在不同位置进行比较的风险。在这里,我们介绍了开源基于降级的空间风险评估框架的新颖应用,以评估英格兰约有20,000所学校的气候预测合奏,以评估过热的风险。这样做,我们展示了一种方法来汇集开源空间风险评估框架工作,数据科学技术和基于物理的建筑模型的优势,以以空间一致的方式评估气候风险,从而可以优先考虑这个易受伤害的年轻人群的适应性行动。具体来说,我们根据三个全球变暖水平(最近的2°C和4℃,比工业前的三个全球变暖水平(最近的2°C和4℃),我们评估了学年中每个学校过热的预期天数(内部手术温度超过高阈值)。我们的结果表明,在未来温暖的气候中,这种风险的增加,内部温度的相对频率超过35℃,高于26°C时的增加高于26°C。的确,这种方法的新颖说明表明,最高风险的学校可以在平均35°C中体验到15°C的内部温度,如果是平均35°C,如果气候温暖的速度超过了2°C以上c. c off tee-2°C超过2°c°C-超过2°C°o°C;最后,我们演示了产出风险中的空间一致性如何使高风险学校的优先级进行适应行动。
摘要在本研究中,细菌和真菌多样性以及挥发性概况,即即食葡萄牙止痛药,ibérico发酵香肠,由Beja(生产商A)和Evora(生产者B)的两个手工生产商制造。为此,将不同的选择性生长培养基和元时间分析与顶空相固相微型提取气相色谱/质谱法(HS-SPME-GC/MS)相结合。微生物可行计数的结果表明,乳酸细菌的活性微生物种群(最多8 log cfu g -1),凝结酶阴性球菌(最多6 log cfu g -1)和Eumyycetes(最多6 log cfu g -1)。细菌种群的特征是Latilactobacillus Sakei(高达72%)与Weissella和weissella和葡萄球菌相对相对频率。Mycobiota主要由Hansenii Debaryomyces(高达相对频率的55%)和kurtzmaniella Zeylanoides(高达相对频率的24%)主导。也检测到了wickerhamomyces子细胞和Zygosacchomyces rouxii的意外物种。HS-SPME-GC/MS分析允许识别复杂的挥发性曲线,显示超过160个挥发性有机化合物(VOC)。VOC属于十二类,例如醛,酮和内酯,酯和醋酸酯,醇,萜类化合物,硫酸化合物,硫酸化合物,脂肪族烃,芳香族烃,氮,氮化合物,酸,酸味,富氏和pyrans和pyrans和Partyls和Partyls和Plactors。对VOC组成的分析提供了证据,表明两个生产者(A和B)的样本不同,如主要成分分析所证实。因此,尽管两个生产商的生产过程可能是用于制造Painho型香肠的生产商,但环境条件,所使用的原材料以及与屠夫的经验实践相关的变化,对最终产品产生了强烈影响。本研究中获得的结果代表了关于葡萄牙发酵香肠的生物多样性和VOC组成的知识的进一步发展。为了更好地了解自动微生物与painho de porcoibérico发酵香肠中的肉糊之间发生的相互作用,必须在整个生产过程中进一步加深微生物和VOC动态。关键字:latilactobacillus sakei,hansenii,metataxonomic Analysis,生物多样性,Mycobiota,VolatiLome
标志性(形式与意义之间的相似之处)越来越被认为是语言的重要特征(Dingemanse等,2015; Perniss等,2010),包括在形式上的语音方法中(例如Alderete&Kochetov,2017年)。除其他外,这项工作表明,特定的声音在统计学上具有某些含义的单词,例如“小”的单词 / i /(例如,Johansson等人,2019年)。在这里,我们研究了Rhotics的标志性潜力。我们以前曾证明,颤音 / r /在质地描述符的翻译等效物中更为常见,来自80个家庭的300多种语言(Winter等,2022)。此外,对来自28种语言和12个家庭的1,000名参与者进行的实验表明,人们可靠地匹配了牙槽颤音,以与平滑线相比粗糙/锯齿线(®Wiek等人,2024年)。在这些发现上构建这些发现,我们提出了两项新的研究。第一个针对英语词典中 /ɹ /声音的稳定含义;第二个用传统的词来查看这些声音的语音调制。首先,我们使用纹理形容词的粗糙度等级(Stadtlander&Murdoch,2000)和Carnegie Mellon University(CMU)词典进行了粗糙度评级,对英语进行了定量分析,以检查词典中的 /ɹ /的分布。使用重新采样方法,我们创建了触摸形容词样本的引导程序样本,以在较高的粗糙度(例如'磨碎',``刺刺','',``ucgged'','locky'的单词中得出95%的间隔。这些单词中的相对频率(47%,CI:[35%,42%])远远超过了使用整个CMU作为基线(10%)的“平滑”单词(10%)和一般词汇所观察到的。与 /ɹ /相比,没有其他声音显示触摸和基线词汇之间的差异很强,这表明声音可以在词典的这个角落起作用。我们先前表明的是,Rhotics和粗糙度的关联可以一直追溯到原始印度 - 欧洲(Winter等,2022),我们推测,当声音仍然是颤音时,词典中的这种模式可能已经形成。有趣的是,我们的第二个分析使用了来自各种媒体(广告,电影,音乐)的一系列定性示例,以表明即使在单词的动态修改过程中,即使没有散布的语言,也没有颤音作为主要变体,颤抖的表面,以实现标志性效果。例如,美国广告的口号“ rrrruffles有脊”使用夸张的颤音来唤起薯片的质地,在戒指之王中,戈尔姆(Golumn
生物多样性定义和类型生物多样性可以定义为不同生态系统中生物的多样性,包括陆地,海洋和沙漠环境。它还指构成生态系统并通过食物链和网络相连的各种生命形式。生物多样性对于维持地球上的生命至关重要,为人类提供了许多好处。生物多样性的类型有三种主要类型的生物多样性类型:遗传多样性,物种多样性和生态多样性。遗传多样性是指由于其遗传构成而导致的生物之间的变化,这会影响物理特征,例如人类的肤色或不同种类的农作物,例如大米或小麦。物种多样性是生态系统中发现的各种种类的种类。每个人都与同一物种中的其他人具有独特的特征,但与其他物种的特征不同。生态多样性它涵盖了各种生态系统(包括沙漠,雨林和红树林)之间观察到的多样性,这些多样性支持广泛的植物和动物生命形式。生物多样性生物多样性的重要性在维持生态稳定性方面起着至关重要的作用,通过支持各种生态系统,这些生态系统产生必不可少的服务,而没有人类生存是不可能的。生物多样性是我们生态系统的重要组成部分,它源自各种植物,包括木材,纤维,香水,润滑剂,橡胶,树脂等。国家公园和庇护所作为旅游业的来源,为许多人提供美丽和喜悦。生物多样性的保存至关重要,因为它可以保留文化遗产并允许物种自愿存在。生物多样性包括植物物种,动物物种和微生物之间的变异性,以及它们在生态系统中的相对频率。它反映了不同层面的生物的组织,具有重要的生态和经济重要性。印度的多元化生态系统:植物和动物生活丰富的挂毯,该国在全球拥有令人印象深刻的植物物种丰富度排名。两个生物多样性热点 - 西高止山脉和喜马拉雅山脉 - 是世界威胁物种的四分之一的家。印度还以各种各样的驯化作物(包括鸽子豌豆,茄子和芝麻)而闻名。该国的动物群同样令人印象深刻,有91,000多种动物物种。尽管具有丰富的生物多样性,但仍在进行保护工作,以减轻物种损失的惊人速度。积极主动的举措,例如育种计划和保护区,旨在保护印度独特的生态系统。生物多样性是指各种来源(包括陆地,海洋和沙漠生态系统)的生物学生物之间的变化。这个概念包括三个关键方面:物种多样性,遗传多样性和生态多样性。生态生物多样性强调了复杂食品链和网中动植物物种的相互联系。此外,生物多样性通过娱乐,旅游,文化丰富,教育和研究机会为社会福祉做出了贡献。生物多样性的重要性在于其对生态系统生产力,养分循环,气候调节,节水,土壤形成以及提供基本生物学资源的多方面益处。