意味着必须满足两个条件:1) 所有概率或概率分布都是已知的或完全可确定的;2) 系统组件是独立的,即描述组件可靠性行为的所有随机变量都是独立的,或者它们的依赖关系是精确已知的。如果满足这两个条件(这里假设系统结构是精确定义的,并且存在一个已知函数将系统故障时间 (TTF) 和组件的 TTF 或某些逻辑系统函数联系起来),那么总是可以(至少在理论上)计算出精确的系统可靠性度量。如果至少违反其中一个条件,则只能获得区间可靠性度量。实际上,很难期望第一个条件得到满足。如果我们掌握的有关组件和系统功能的信息是基于统计分析的,那么应该使用概率不确定性模型来数学表示和处理该信息。但是,用于描述系统和组件的可靠性评估可能来自各种来源。其中一些可能是基于相对频率或完善的统计模型的客观测量。部分可靠性评估可能由专家提供。如果系统是新的或仅作为项目存在,那么通常没有足够的统计数据来作为精确概率分布的基础。即使存在这样的数据,我们也并不总是从统计角度观察它们的稳定性。此外,可能无法准确观察到故障时间,甚至可能错过。有时,故障根本不发生或部分发生,导致对故障时间的观察被审查,而审查机制本身可能很复杂且不准确。因此,可能只有部分关于系统组件可靠性的信息可用,例如,平均故障时间 (MTTF) 或一次故障概率的界限。当然,人们总是可以假设 TTF 具有一定的概率分布,例如指数、威布尔和对数正态分布是流行的选择。但是,如果我们的假设仅基于我们的经验或专家的经验,我们应该如何信任可靠性分析的结果。有人可能会回答说,如果专家根据自己的经验为 MTTF 提供了一个间隔,那么我们为什么要拒绝他对 TTF 概率分布的假设呢?事实是,由于人类评估的精度有限,专家得出的判断通常不准确且不可靠。因此,任何关于某个概率分布的假设,加上专家判断的不准确性,都可能导致错误的结果,而这些结果往往无法验证
主要关键词