类黄酮构成茶厂叶片(茶花)的主要营养素。迄今为止,尽管众所周知,干旱应力会对茶叶中类黄酮的生物合成产生负面影响,但这种现象背后的机制尚不清楚。在此,我们报告了一种蛋白质磷酸化机制,该机制对干旱条件下茶叶中类黄酮的生物合成负面调节。转录分析表明,类黄酮生物合成的基因表达下调以及CSMPK4A的上调编码叶片中丝裂原激活蛋白激酶的CSMPK4A。荧光素酶互补和酵母双杂交测定法表明,CSMPK4A与CSWD40相互作用。在体外,特异性蛋白质免疫和蛋白质质谱分析的磷酸化测定法表明CSWD40的SER-216,THR-221和SER-253是CSMPK4A的潜在磷酸化位点。此外,在干旱条件下,蛋白质免疫分析发现了茶叶中CSWD40的磷酸化水平升高。三个磷酸化位点的突变产生了去磷酸化的CSWD40 3A和磷酸化的CSWD40 3D变体,这些变体被引入拟南芥TTG1突变体中。代谢分析表明,TTG1中的花色蛋白蛋白和原蛋白素含量较低:CSWD40 3D
摘要:Rigosertib(ON-01910.NA)是新型合成苄基苯乙酸酯家族的小分子成员。目前正在进行几种骨髓增生综合征和白血病的III期临床试验中,因此接近临床翻译。缺乏对其作用机理的理解,阻碍了Rigosertib的临床进展,因为它目前被认为是多目标抑制剂。rigosertib首先被描述为有丝分裂主调节蛋白酶样激酶1(PLK1)的抑制剂。近年来,一些研究表明,rigosertib也可能与PI3K/AKT途径相互作用,充当RAS-RAF结合模拟物(改变RAS信号途径),作为微管稳定剂,或作为压力诱导的磷酸化循环液的激活剂,最终具有磷酸化的磷酸化和磷酸化的磷酸化。了解Rigosertib的作用机理具有值得探索的潜在临床意义,因为它可能有助于调整癌症疗法并改善患者的结局。
简介 许多生物过程和途径的调节都是通过磷酸酯的形成和裂解来实现的。蛋白质的磷酸化通过蛋白激酶和磷酸酶的相互作用而精心平衡。为了了解这些途径,制药行业和研究机构目前正在开展大量科学工作。实现这一目标的重要一步是准确了解一般或特定的磷酸化状态,这需要保留磷酸化模式。
摘要:尽管被称为我们细胞的简单动力室,但线粒体令人惊讶地复杂。作为半自主细胞器,线粒体必须灵活适应细胞环境中的动态变化。大约75年前的开创性工作表明,磷酸化构成了这种调节范式,最初发现是从线粒体基质中微调丙酮酸脱氢酶的活性。除了这一早期发现之外,磷酸化影响线粒体的程度在很大程度上尚未得到探索。我们注意到线粒体容纳多个蛋白质磷酸酶,这表明,蛋白质去磷酸化最少可以增强细胞器功能。我们的工作表明,在线粒体磷酸酶敲除时,数百个磷酸化事件可重复增加,这表明这些细胞器中存在广泛但不足的调节网络。最近的一个例子涉及线粒体磷酸酶PPTC7,该磷酸酶PPTC7在被淘汰时会在小鼠中引起完全渗透的致死性 - 一种引人注目的表型表明,适当调节的线粒体磷酸化对于哺乳动物发育至关重要。我们最近发现,PPTC7定位于外部和内部线粒体室,以动态介导基于磷酸化的调节线粒体功能从“内而外”。在本演讲中,我不仅概述了我们最近了解基于磷酸化的线粒体功能的工作,而且还将讨论我们对这些细胞器的发现如何塑造了我的科学旅程。
sephin1被发现为蛋白质磷酸酶抑制剂,其对神经退行性疾病的有效性已得到证实。有关于用蛋白质磷酸酶1调节亚基15 a抑制pp1全酶对EIF2α去磷酸化的抑制作用的报道。在本研究中,我们发现Sephin1在用衣霉素施用的ER应激模型中显着抑制了肾小管细胞死亡。CHOP在ER应力诱导的细胞死亡途径中起着核心作用,需要核易位作为转录因子,以增加与细胞死亡相关基因的表达。sephin1明显抑制了CHOP的核易位。为了阐明Sephin1细胞死亡抑制作用的分子机制,我们使用了与衣霉素的ER应激下的人类肾小管上皮细胞。sephin1通过在Ser30处促进磷酸化来降低细胞内切碎水平,从而导致UPS蛋白质降解。磷酸化的CHOP是由Thr172磷酸化活化的AMPK产生的,而Sephin1增加了磷酸化的AMPK。磷酸化的AMPK被PP2A通过其THR172的去磷酸化而灭活,而Sephin1抑制了PP2A Holoenzyme与PP2A亚基B同工型的形成。这些结果表明,在该实验系统中,抑制PP2A全酶形成是Sephin1的分子靶标。
摘要 研究表明淀粉样蛋白前体 (APP) 调节突触稳态,但证据并不一致。特别是,控制 APP 向轴突和树突中突触运输的信号通路仍有待确定。我们之前已证明亨廷顿蛋白 (HTT)(与亨廷顿氏病有关的支架蛋白)调节神经突触中的 APP 运输,我们使用微流体皮质神经元网络芯片检查 APP 运输和定位到突触前和突触后区室。我们发现,在被 Ser/Thr 激酶 Akt 磷酸化后,HTT 调节轴突中的 APP 运输,但不调节树突中的 APP 运输。不可磷酸化的 HTT 的表达降低了轴突前向 APP 运输,降低了突触前 APP 水平,并增加了突触密度。消除 APPPS1 小鼠体内 HTT 磷酸化,过表达 APP,降低突触前 APP 水平,恢复突触数量,改善学习和记忆。Akt-HTT 通路和 APP 的轴突运输因此调节 APP 突触前水平和突触稳态。
人类表皮生长因子受体2(HER2)被靶向的剂已被证明是有效的,但是,对这些药物的抗性发展已成为治疗HER2+乳腺癌的障碍。证据表明,汉克是抗癌和耐药性HER2+乳腺癌的抗癌靶标。在这项研究中,在大块头的下游基板的磷酸化事件中,有选择性的块状抑制剂,作为HER2+乳腺癌中大块头活性的标志。Rubicon已被确定为在丝氨酸上磷酸化的大块头的底物。的发现表明,在S92处,大块介导的Rubicon磷酸化促进了HER2/NEU+乳腺癌中的自噬和肿瘤发生。HUNK抑制可防止Rubicon S92在HER2/NEU+乳腺癌模型中抑制磷酸化并抑制肿瘤发生。这项研究将下游磷酸化事件描述为对大块活性的量度,并鉴定出对HER2+乳腺癌具有有意义疗效的选择性大块头抑制剂。
386名参与者的结果为199名(52%),平均年龄为68(8)岁。血浆P-TAU217的CB患者的阳性AβPET结果(平均[SD],0.57 [0.43] pg/ml)或FTP PET(平均[SD],0.75 [0.30] pg/ml)的浓度与AD(平均[0.72 [SD],0.72 [0.37],no no nome),FTP PET(平均[0.30] pg/ml),here(0.75 [0.30] pg/ml),here and n no no nof and nof [0.37], 控制。在CBS中,P-TAU217具有出色的诊断性能,在接收器操作特征曲线(AUC)下,AβPET为0.87(95%CI,0.76-0.98; P <.001)和0.93(95%CI,0.83-1.00; P <.001)。在基线时,CBS-AD(n = 12)的个体由PET验证的血浆P-TAU217截止值0.25 pg/ml或更高,与CBS-FTLD的个体相比,基线时颞眼萎缩增加了(n = 39),而较长的人(n = 39),具有CBS-cbs-fterl faster faster fasters afstall faster afters aftast。与CBS-AD的人(平均[SD],3.5 [0.5] vs 0.8 [0.8]分/年/年相比,具有CBS-FTLD的个体在修改后的PSP评级量表上的进展也更快。
表皮生长因子受体(EGFR)是头颈鳞状细胞癌(HNSCC)中的治疗靶标。对诸如西妥昔单抗等EGFR靶向疗法的抗药性提出了一个具有挑战性的问题。这项研究旨在通过蛋白质磷酸化培养来表征HNSCC细胞系中获得的西妥昔单抗抗性机制。通过此,可以识别出有希望的组合处理,以克服HNSCC中获得的Cetuximab耐药性。蛋白质磷酸化促填充物在获得的西替辛基抗性细胞中,与西替辛基抗敏感细胞相比,在获得cetuximab抗性细胞中,蛋白质磷酸化的磷酸化增加了,这是通过蛋白质斑点表达的。基于这种蛋白质磷酸化的预测,设计了西妥昔单抗和AKT1/2/3抑制剂MK2206的新型组合处理。在同时治疗时间表中观察到了1个可获得的Cetuximab抗性变体。总而言之,这项研究表明,增加的AKT1/2/3磷酸化似乎是HNSCC细胞系中获得的Cetuximab耐药性的特征。我们的结果还显示了在同时治疗方案中西妥昔单抗和MK2206之间的协同相互作用的添加剂。这些数据支持以下假设:西妥昔单抗与PI3K/AKT途径抑制可能是一种有前途的新型治疗策略,可以克服HNSCC患者获得的获得的Cetuximab耐药性。
载脂蛋白(APO)E4是阿尔茨海默氏病的主要遗传危险因素。虽然神经元通常在中枢神经系统中产生少数APOE,但APOE的神经元表达会响应压力而大大增加,并且足以驱动病理学。当前,APOE4表达如何调节病理学的分子机制尚未完全不足。在这里,我们扩展了先前的研究,该研究测量了APOE4对蛋白质丰度的影响,包括分析蛋白质磷酸化和表达APOE3或APOE4的等源性神经2A细胞中蛋白质磷酸化和Ubiq-脉络性信号传导。apoE4表达导致血管舒张刺激的磷酸蛋白(VASP)S235磷酸化的蛋白激酶A(PKA)(PKA)的磷酸化急剧增加。这种磷酸化与许多肌动蛋白细胞骨架和微管蛋白的VASP相互作用破坏了VASP相互作用。通过PKA抑制减少VASP S235磷酸化,导致apoE4-表达细胞中的细胞膜状形成和神经突生长显着增加,超过APOE3-表达细胞中观察到的水平。我们的结果强调了APOE4对多种蛋白质调节模式的明显和不同影响,并鉴定蛋白质靶标以恢复APOE4-相关的细胞骨架缺陷。