标签 203 压力高度 - 1,000 至 +53,000 英尺 标签 204/220 气压校正高度 - 1,000 至 +53,000 英尺 标签 212 垂直速度 0 至 20,000 英尺/分钟。标签 353 指示空速 IAS 0/40* 至 450 节 标签 206 计算空速 CAS 0/40* 至 450 节 标签 210 真空速 TAS 0/100* 至 599 节 标签 207 最大。允许空速 VMO 150 至 450 节 标签 205 MACH 编号 0/0.200* 至 0.999 MACH 标签 211 总气温 -60 至 +99 °C 标签 213 静态气温 SAT -99 至 +60 °C 标签 235/237 气压设置 QNH 20.67 至 31.00 inHg 标签 234/236 700 至 1,050 mbar
因此,您已决定通过安装新的主飞行显示器 (PFD) 将飞机上的旧仪表板升级为最新的玻璃面板技术。如果您和许多飞行员或机主一样,您不会花太多时间考虑将使用什么作为备用或待命飞行仪表。但是,所有经过认证的飞机在改装电子 PFD 时,都需要备用仪表来指示姿态、空速、高度和航向。[一个例外:型号合格证限制为 VFR 使用的飞机通常不需要备用姿态指示器。] 目前配备电子飞行显示器的许多飞机都使用普通的旋转质量姿态陀螺仪以及标准高度计和空速指示器作为备用仪表。原始湿罗盘通常用作必需的备用航向指示器。近年来,电子飞行仪表背后的技术取得了长足的进步。它们现在
2018 年 2 月 20 日 08:38,一架 F-16CM,尾号 (T/N) 92-3883,在从日本三泽空军基地 (AB) 起飞的例行训练飞行中发生发动机起火,必须立即降落回三泽空军基地。事故飞机 (MA) 驻扎在日本三泽空军基地,隶属于第 35 战斗机联队第 13 战斗机中队。MA 发动机受损,外部油箱丢失,政府损失估计为 987,545.57 美元。事故航班 (MF) 由两架 F-16CM 飞机组成。事故航班的飞行前检查、起飞和滑行都平安无事,直到起飞阶段。事故飞行员 (MP) 离开 28 号跑道 (RWY),比事故长机飞行员 (MLP) 晚 15 秒。加力起飞后不久,三泽空中交通管制员通知 MP 和事故领航员 (MLP),MP 飞机后部出现大火。MLP 还就火灾问题联系了 MP。在 MP 上升过程中,他注意到空速和爬升率意外下降。MP 右转返回 28 跑道,当无法保持空速或高度时,MP 按照 F-16CM 关键行动程序抛弃了外挂物(外部油箱)。抛弃后,MA 恢复了一些空速,并实现了更好的爬升率,进入着陆位置。MP 降落在 28 跑道上,并完成了紧急发动机关闭和紧急地面出口
生产并测试所有单个部件后,组装了一个可操作的原型机。原型机在 PBS 试验台上进行了地面台架测试,并达到了推力、油耗和使用寿命的目标值。从组织和财务角度来看,启动和飞行包线的验证都非常具有挑战性。最初打算在安装到 L-159 喷气式飞机上的特殊容器中测试发动机。然而,这些测试在捷克共和国的空域被证明是不切实际的。因此,该公司联系了莫斯科的中央航空发动机研究所 (CIAM),该研究所有一个用于测试航空发动机的热压室。该系统模拟指定飞行高度的环境条件——温度、压力和空速。发动机在整个飞行包线内都达到了要求的数值,受 0 至 10,000 m 高度和 0 至 0.88 M 空速的限制。启动能力在 8,000 m 高度和 0.6 M 空速下经过验证。通过热压室测试,获得了宝贵的运行数据。这些数据不仅用于发动机特性的内部验证,还可以告知客户 TJ100 的飞行品质。针对无人机和靶机进行了优化和性能增强如今,PBS 的 TJ100 涡喷发动机针对无人机和靶机进行了专门设计、改进和优化。这是一款高性能发动机,具有出色的重量/推力比、延长的使用寿命和低油耗。它目前被评为世界上最好的小型涡喷发动机之一,是全球轻型飞行器的明智选择。
本出版物的知识产权所有权 除非另有说明,本出版物的版权(及任何其他知识产权,如果有)归澳大利亚联邦政府所有。 知识共享许可 除国徽、ATSB 徽标以及第三方拥有版权的照片和图形外,本出版物根据知识共享署名 3.0 澳大利亚许可进行许可。 知识共享署名 3.0 澳大利亚许可是一种标准格式的许可协议,允许您复制、分发、传播和改编本出版物,前提是您注明来源。ATSB 希望您使用以下措辞注明本出版物(及源自本出版物的任何材料)的来源:来源:澳大利亚运输安全局 从其他机构、私人或组织获得的材料的版权属于这些机构、个人或组织。如果您想使用他们的材料,您需要直接联系他们。
摘要 — 本文介绍了一种用于高空长航时 (HALE) 飞机的鲁棒路径跟踪控制器。操作 HALE 飞机的主要控制范例包括基本路径跟踪控制,即在处理非常有限的推力时跟踪参考飞行路径和空速。首要任务是即使在饱和推力期间也要将空速保持在 HALE 飞机的小飞行包线内。对于基本路径跟踪目标,提出了一种混合灵敏度方法,可以轻松处理解耦跟踪和鲁棒性要求。为了处理饱和控制输入,在控制设计中采用了防饱和方案。使用了一种基于观察者的新型混合灵敏度设计,允许直接使用基于反计算的经典防饱和方法。该控制设计在非线性模拟中得到验证,并与基于经典总能量控制的控制器进行了比较。
标签 203 - 压力高度 (1013,25 mb) -1,000 至 80,000 英尺 标签 204/220 气压校正高度 #1/#2 -1,000 至 80,000 英尺 标签 205 - MACH 数 0.200 至 4.000* MACH 标签 206 - 计算空速 (CAS) 0/40 至 1024* 节 标签 207 - 最大允许空速 (VMO) 150 至 1024* 节 标签 210 - 真空速 (TAS) 0/100 至 2048* 节 标签 211 - 总气温 (TAT) -61° 至 +100° 摄氏度 标签 212 - 垂直速度 (RoC) 0 至 32,768* 英尺/分钟标签 213 - 静态气温 (SAT) -100° 至 +100° 摄氏度 标签 221 - 指示攻角 -60° 至 +60° 度 标签 234/236 - 气压校正 mb #1/#2 20.67 至 31.16 mbar 标签 235/237 - 气压校正 inHg #1/#2 700 至 1066 inHg 标签 353 - 指示空速 (IAS) 0/40 至 2000 节 标签 241 - 校正攻角 -60° 至 +60° 度
摘要 — 本文讨论了滑行道入口处机组驾驶技术质量评估问题。考虑到飞机控制指挥模式中的人为因素,明确了滑行道入口的边界。进入滑行道时,不仅要考虑动作的准确性,还要考虑飞机的空速。考虑了空速或迎角测量系统发生故障时收到警告的问题。开发的警告系统基于对飞行参数相关场的分析。在某些情况下,机组人员没有保持正确的飞行参数,而是不成比例地增加迎角,导致螺旋形飞行,或使飞机急剧俯冲并进一步与地面相撞。因此,有必要在进入滑行道之前评估机组驾驶技术的质量。当绕圈飞行时,这是从第四次掉头结束到着陆。机组人员的不正确操作与其紧张状态有关。还提供了一种系统,用于确定在人类操作员受到负面因素影响的情况下飞行技术质量的下降。该系统基于自相关函数的分析。索引术语——飞行路径;下滑道;人为因素;参数幅度。
本文介绍了自适应控制方法在将自主固定翼飞机回收到航空母舰上的应用。所用的控制结构是模型参考自适应控制,在俯仰、滚转、偏航和空速轴上实施,以提供飞机的 6 个自由度控制。控制系统是为 NAVAIR ExJet 飞机模型开发的。控制器的结构包括一阶线性模型跟随器和自适应批评控制器。自适应用于增强自适应批评控制器产生的命令信号,使用以下方法:自适应偏差校正器、最佳控制修改和局部线性模型补偿。基于状态空间模型的逆控制器生成控制效应器命令。控制系统参考输入是旋转速率和空速,提供外环控制器来引导飞机到达着陆点。控制系统设计是通过使用基于标称误差、时间延迟裕度和着陆精度的指标来实现的。在标称、效应器故障和控制系统建模错误条件下评估控制系统。定义的控制系统能够在标称、故障和建模错误条件下提供所需的控制。
推进系统的特性可在档案文献中找到。鉴于此,本研究的目的是确定由电动机驱动的直径在 4.0 至 6.0 英寸范围内的各种小型螺旋桨的性能。设计和建造了一个实验测试台,其中螺旋桨/电动机安装在风洞中,以进行静态和动态测试。将本实验的静态和动态结果与以前的研究结果进行了比较。对于静态测试,推力系数、螺旋桨功率系数和总效率(定义为螺旋桨输出功率与电输入功率之比)与螺旋桨转速的关系图。对于动态测试,螺旋桨的转速在规则间隔内保持不变,同时自由流空速从零增加到风车状态。推力系数、功率系数、螺旋桨效率和总效率与各种转速的前进比的关系图。发现推力和扭矩随着转速、螺旋桨螺距和直径的增加而增加,随着空速的增加而减小。使用现有数据以及来自档案和非档案来源的数据,发现方形螺旋桨的推力系数随螺旋桨直径的增加而增加,其中 D = P 。螺旋桨系列的推力系数(sam