在模型生物中定向诱变是基因功能注释和生物医学研究的关键。尽管 CRISPR-Cas9 系统在基因编辑方面取得了技术进步,但在大型动物模型中快速有效地引入定点突变仍然是一个挑战。在这里,我们开发了一种强大而灵活的插入诱变策略,即同源性独立的靶向捕获 (HIT-trapping),它是通用的,可以有效地靶向捕获内源性目的基因,而不依赖于同源臂和胚胎干细胞。进一步优化并为 HIT-trap 供体配备位点特异性 DNA 倒置机制,可以在单个实验中一步生成可逆和条件等位基因。作为概念验证,我们成功地在原代猪成纤维细胞中为 21 种疾病相关基因创建了突变等位基因,平均敲入频率为 53.2%,比以前的方法有了很大的改进。这里提出的多功能 HIT 捕获策略有望简化突变等位基因的靶向生成,并促进猪等大型哺乳动物的大规模诱变。
。CC-BY-NC-ND 4.0 国际许可,未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 7 月 1 日发布。;https://doi.org/10.1101/2020.07.01.183145 doi:bioRxiv 预印本
基因组操作是一种有用的方法,可用于阐明发育、生理和行为方面的分子途径。然而,由于缺乏适用于珊瑚鱼的基因编辑工具,因此它们许多独特特征的遗传基础仍有待研究。一种适合应用这种技术的标志性珊瑚鱼群是海葵鱼 (Amphiprioninae),因为它们与海葵共生、雌雄同体、复杂的社会等级、皮肤图案发展和视觉,并且相对容易在水族箱中饲养,因此被广泛研究。在这项研究中,我们开发了一种基因编辑方案,用于将 CRISPR/Cas9 系统应用于眼斑海葵鱼 (Amphiprion ocellaris)。受精卵的显微注射用于证明我们的 CRISPR/Cas9 方法在两个不同靶位点的成功应用:与视觉有关的视紫红质样 2B 视蛋白编码基因 (RH2B) 和与黑色素生成的酪氨酸酶生成基因 (tyr)。对眼斑海马胚胎中测序的靶基因区域进行分析表明,注射胚胎的吸收率高达 73.3%。进一步分析亚克隆的突变基因序列并结合扩增子散弹枪测序表明,我们的方法在 F0 眼斑海马胚胎中产生双等位基因突变的效率为 75% 到 100%。此外,我们清楚地显示了 tyr 突变胚胎的功能丧失,其表现出典型的低黑色素表型。该方案旨在作为进一步探索 CRISPR/Cas9 在眼斑海马中潜在应用的有用起点。眼斑鱼,作为研究小丑鱼和其他珊瑚鱼基因功能的平台。
3 美国加利福尼亚州伯克利市加利福尼亚大学创新基因组学研究所 4 美国明尼苏达州圣保罗市明尼苏达大学遗传学、细胞生物学和发育系。5 美国明尼苏达州圣保罗市明尼苏达大学精准植物基因组学中心。6 美国明尼苏达州圣保罗市明尼苏达大学基因组工程中心。
与牛奶产量相关的突变:β酪蛋白:大约25-30%的牛奶是β-蛋白。有几个等位基因β酪蛋白等位基因,其中最常见的是A1和A2 - 其他类型包括A3,B,C,C,D,E,F,G,H1,H2,而我更稀有。A1等位基因与脂肪和蛋白质百分比增加有关。A2等位基因对牛奶和蛋白质产量有积极影响,有些人假设A2牛奶比A1牛奶更健康。B等位基因更有利于Rennet凝血和奶酪制作。kappa酪蛋白:B等位基因对凝乳生产更牢固,对凝血时间和奶酪产量产生积极影响。G和E等位基因与较不利的凝血特性相关。kappa酪蛋白与β酪蛋白具有相互作用。在凝结时间和凝乳的时间内,每个基因都有一个B等位基因会产生最佳结果。A等位基因是祖先等位基因。生长激素:在垂体前腺体中产生,在控制营养利用,代谢,泌乳,生育和生长中起着至关重要的作用。
注:同源臂位于敲入位点上游和下游约 500–1,000 bp 处。图 1 C 为 SIN3A 示例的供体载体示意图。为选取基因组区域作为同源臂,我们使用 Primer-BLAST ( https://www.ncbi.nlm.nih.gov/tools/primer-blast/ ) 设计了两对引物,分别位于 SIN3A 终止密码子上游 500–1,000 bp 处和下游 500–1,000 bp 处。也可以使用其他程序设计引物。正向和反向引物之间的区域用作同源臂。我们选择 SIN3A 终止密码子上游 501 bp 序列作为左同源臂(图 2 A 和 2B 中的 SIN3A 左),并选择 SIN3A 终止密码子下游 612 bp 序列作为右同源臂(图 2 A 和 2B 中的 SIN3A 右)。
长基因间非编码 RNA(lincRNA#1)在无角牛胎儿的角芽区过度表达,表明其可能在角芽抑制中发挥作用。使用基因组编辑来测试此序列的缺失是否与角表型有关。将两个具有高突变效率的 gRNA 靶向 lincRNA#1 序列两侧的 5′ 和 3′ 区域,在授精后 6 小时与 Cas9 一起作为核糖核蛋白复合物注射到牛受精卵(n = 121)中。在产生的囊胚(n = 31)中,84% 具有预期的 3.7 kb 缺失;在这些具有 3.7 kb 缺失的胚胎中,88% 是双等位基因敲除。将 39 个推测已编辑的 7 天囊胚移植到 13 头同步受体母牛体内,导致 10 例妊娠,其中 5 个胚胎在 POLLED 基因座上为显性 PC POLLED 等位基因杂合子,5 个胚胎为隐性 pp 基因型。产生的胎儿中有 8 个 (80%) 为双等位基因 lincRNA#1 敲除,其余两个为嵌合体。RT-qPCR 分析用于确认敲除胎儿中不存在 lincRNA#1 表达。对基因型 (PC p) POLLED 、lincRNA#1 敲除胎儿的表型和组织学分析显示,其形态与未编辑的对照无角胎儿相似,表明仅缺乏 lincRNA#1 不会导致有角表型。
摘要:过去几十年来,分子技术的发展(例如高通量 DNA 标记基因分型)提供了更强大的植物育种方法,包括标记辅助选择和基因组选择。同时,以全基因组测序为首的对植物遗传学和基因组学的大量投资使人们对植物基因组中的基因和遗传途径有了更深入的了解。然而,正向遗传学方法(从表型开始绘制突变位点或 QTL,目的是克隆致病基因)与反向遗传学方法(从大规模序列数据开始,然后追溯基因功能)之间仍然存在差距。最近建立的基于 CRISPR-Cas 的高效基因编辑有望弥补这一差距,并提供一种快速方法来验证通过自然变异研究确定的基因和等位基因的功能。CRISPR-Cas 技术可用于敲除单个或多个基因、通过碱基编辑和主要编辑精确修改基因以及替换等位基因。此外,原生质体分离、植物体内转化和发育调控基因的使用等技术有望实现高通量基因编辑,从而加速作物改良。
18补充图1。通过半对准读数的软剪切引入的偏差。显示了六个读取与包含A/T变体的参考序列的比对。Bold Black T和Red A分别表示参考和替代等位基因。软剪裁由罢工表示。无软剪切,三个读数将支持参考(t)和替代(a)等位基因,从而导致无偏变体等位基因频率(VAF)为3/6 = 0.5。(a)读取R3被软剪切,直到获得参考的连续五次匹配为止。剪辑后,只有两个读数支持备用等位基因(a),而三个读取支持参考等位基因(t),导致偏置2/5 = 0.4的偏置VAF。(b)FIXVAF剪辑所有读数均按五个基础读取,无论它们是否包含变体位点还是支持参考或替代等位基因。读取支持参考等位基因和备用等位基因的读取现在被五个基部夹住。在此示例中,FIXVAF将计算2/4 = 0.5的VAF,因此消除了偏差。
注 1:如何进行双等位基因敲除:如果您只有单等位基因敲除(杂合子)并且想要获得双等位基因敲除(纯合子),您可以订购另一个包含不同哺乳动物选择标记(如杀稻瘟素或新霉素抗性标记)的供体载体。OriGene 拥有两种功能性盒。您可以使用新的供体载体再次进行敲除程序以靶向第二个等位基因,因为一个等位基因已被靶向并被 GFP-puro 盒替换。或者,您可以使用 Cre(SKU GE100018)从您编辑的细胞中去除 puro 盒,并使用相同的供体载体靶向第二个等位基因。