蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
抽象背景二甲双胍(MET)是2型糖尿病的一线治疗方法,在治疗各种疾病(例如心血管疾病,神经退行性疾病,癌症和衰老)中起着有效的作用。然而,依赖MET的抗肿瘤免疫的潜在机制仍有待阐明。方法Mitotempo是线粒体超氧化物的清道夫,废除了MET的抗肿瘤作用,但没有消除抗编程细胞死亡(PD-1)抗体(AB)治疗。因此,我们研究了遇到的抗肿瘤效应的机制。葡萄糖转运蛋白(GLUT)-1,线粒体活性氧(MTROS),干扰素(IFN)-γ,Ki67,自噬标记,NF-E2相关因子2(NRF2)的激活标记和乳腺脂蛋白复合物1(Mammaycin Confictrc 1(Mimamalian Infilc)1(mmAMAMAYCINC)1(MIMMAYCIN COFFILC 1)通过流式细胞仪分析检查淋巴细胞(CD8TIT)。此外,还使用有条件的NRF2和p62小鼠来检测这些标记,并监测体内肿瘤生长。对CD8TIT和肿瘤细胞进行 RNA测序。 黑色素瘤细胞含有IFN-γ受体(IFNγR)细胞质域缺失突变体过表达,并用于使用Seahorse Flux分析仪来表征这些肿瘤细胞的代谢谱。 结果MET给药可提高MTROS和细胞表面Glut-1,从而导致CD8TIT中的IFN-γ产生。 mtros以糖酵解依赖性方式激活NRF2,从而诱导自噬,谷氨酰胺溶解,mTORC1和p62/sqSTM1的激活。RNA测序。黑色素瘤细胞含有IFN-γ受体(IFNγR)细胞质域缺失突变体过表达,并用于使用Seahorse Flux分析仪来表征这些肿瘤细胞的代谢谱。结果MET给药可提高MTROS和细胞表面Glut-1,从而导致CD8TIT中的IFN-γ产生。mtros以糖酵解依赖性方式激活NRF2,从而诱导自噬,谷氨酰胺溶解,mTORC1和p62/sqSTM1的激活。在丝氨酸351(p-p62(S351))上,p62的MTORC1依赖性磷酸化也参与了NRF2的激活。CD8TIT中NRF2的条件缺失消除了MTORC1激活和抗肿瘤免疫。 与抗PD-1 AB的作用协同作用,满足CD8TIT增殖和IFN-γ分泌,从而导致肿瘤细胞中糖酵解和氧化磷酸化的降低。 因此,在CD8TIT中,GLUT-1以及活化的树突状细胞的扩展升高。 此外,缺乏IFNγR信号的肿瘤细胞消除了CD8TIT的IFN-γ的产生和增殖。CD8TIT中NRF2的条件缺失消除了MTORC1激活和抗肿瘤免疫。与抗PD-1 AB的作用协同作用,满足CD8TIT增殖和IFN-γ分泌,从而导致肿瘤细胞中糖酵解和氧化磷酸化的降低。因此,在CD8TIT中,GLUT-1以及活化的树突状细胞的扩展升高。此外,缺乏IFNγR信号的肿瘤细胞消除了CD8TIT的IFN-γ的产生和增殖。
背景:细胞间融合正在成为各种癌症类型转移过程的关键要素。我们最近发现,由恶性前期(IMR90 E6E7,即 E6E7)和恶性(IMR90 E6E7 RST,即 RST)间充质细胞自发融合而产生的杂交体重现了人类未分化多形性肉瘤 (UPS) 的主要特征,具有高度重排的基因组和增强的扩散能力。为了更好地描述这些杂交体的内在特性,我们在此研究了它们与亲本相比的代谢能量特征。结果:我们的研究结果表明,杂交体具有类似瓦尔堡的代谢,就像它们的 RST 对应物一样。然而,杂交体表现出更大的代谢活性,增强了糖酵解以增殖。有趣的是,通过使用 5-氨基咪唑-4-羧酰胺-1- β -D-呋喃核苷 (AICAR)(一种 5 ′-腺苷酸 (AMP) 活化蛋白激酶 (AMPK) 的激活剂)改变代谢环境条件,特异性地降低了杂交瘤的生长,并且还消除了表现出增强糖酵解的杂交瘤的侵袭能力。此外,AICAR 可有效阻断与人类 UPS 细胞系侵袭性相关的肿瘤特征。
摘要 Warburg 效应的特点是肿瘤组织代谢转化导致癌细胞葡萄糖摄取和乳酸分泌增加。相应的分子途径从氧化磷酸化转变为有氧糖酵解,这是由于葡萄糖降解机制的变化,即癌细胞的“Warburg 重编程”。参与 Warburg 转化的关键糖酵解酶、葡萄糖转运蛋白和转录因子在致癌过程中经常失调,被认为是极有希望的诊断和预后标志物以及治疗靶点。黄酮类化合物是具有多效活性的分子。黄酮类化合物调节代谢的抗癌作用已在临床前研究中得到广泛证实。黄酮类化合物调节与 Warburg 表型有关的关键途径,包括但不限于 PKM2、HK2、GLUT1 和 HIF-1。本综述文章讨论了黄酮类化合物“抗 Warburg”作用的相应分子机制和临床相关性。最突出的例子是针对性“反瓦博格”措施在癌症管理中的潜在应用。个性化分析和患者分层是预测、预防和个性化医疗背景下实施针对性“反瓦博格”措施的有力工具。
缺乏p53信号传导的细胞经常发生在溃疡性结肠炎(UC)中,被认为是UC相关结直肠癌(CRC)的早期驱动因素。结肠炎期间的上皮损伤与从成年人,稳态到“胎儿样”再生状态的瞬时干细胞重编程有关。在这里,我们使用基于鼠和类器官的模型来研究上皮重编程过程中TRP53的作用。我们发现,p53信号传导在体内稳定期间是无声的,并且在DSS诱导的结肠炎上的上皮中被强烈上调。在WT细胞中导致再生状态的终止,而缺乏TRP53的隐窝仍锁定在高度增殖的,再生状态的长期中。WT细胞中的再生状态需要高Wnt信号传导才能维持糖酵解的元水平。相反,由于限制速率酶PKM2的过表达,TRP53缺乏症可实现与Wnt无关的糖酵解。我们的研究揭示了p53信号转导的上下文相关性,特别是在损伤引起的再生状态中,解释了UC和UC相关CRC中缺乏p53信号的克隆的高丰度。
注1。细胞因子:一种主要由其他细胞分泌的蛋白质,并通过与细胞表面的受体结合来维持和生长细胞。如果缺乏,细胞将无法生存。注2。造血干细胞:这些是哺乳动物成人骨髓中发现的少数细胞,通过分裂细胞,它们为生命提供了血液。注3。线粒体:细胞内的细胞器之一。使用两种代谢途径,即柠檬酸循环和电子传输系统,将使用氧气吸入细胞的养分被分解为水和二氧化碳以产生ATP。注4。sdhaf1:一种在电子传输系统中称为复合物II的蛋白质,以及辅助琥珀酸脱氢酶(SDH)复合物的因子的缩写。注5。ATP:三磷酸腺苷。细胞所需的最大能量是由ATP分解时产生的能量提供的。注6。 pGAM1基因诱导的缺失小鼠:一种在磷酸甘油酸突变酶基因(糖酵解酶之一)给予他莫昔芬(一种化学合成的雌激素)时被诱导删除的小鼠。可以在时间和组织中专门删除基因。注7。 糖酵解系统:将葡萄糖掺入细胞中并分解为丙酮酸和乳酸无氧的过程,从而获得能量。注8。 离子色谱/质谱技术:通过组合电离色谱法量化每个分子的丰度的技术,可以高精度分离电离化合物和质谱法,质谱法,从而可以精确测量质量和电荷的比例,从而量化每种分类分子的质量和电荷。注9。 五肽磷酸盐循环:一种代谢途径,该途径合成了来自葡萄糖的Pentose,一种DNA和RNA的材料。在此过程中,细胞提供去除活性氧所需的还原能力。注意10。 活性氧:在包含氧的分子中,它们是特别反应性的,很薄,例如DNAATP:三磷酸腺苷。细胞所需的最大能量是由ATP分解时产生的能量提供的。注6。pGAM1基因诱导的缺失小鼠:一种在磷酸甘油酸突变酶基因(糖酵解酶之一)给予他莫昔芬(一种化学合成的雌激素)时被诱导删除的小鼠。可以在时间和组织中专门删除基因。注7。糖酵解系统:将葡萄糖掺入细胞中并分解为丙酮酸和乳酸无氧的过程,从而获得能量。注8。离子色谱/质谱技术:通过组合电离色谱法量化每个分子的丰度的技术,可以高精度分离电离化合物和质谱法,质谱法,从而可以精确测量质量和电荷的比例,从而量化每种分类分子的质量和电荷。注9。五肽磷酸盐循环:一种代谢途径,该途径合成了来自葡萄糖的Pentose,一种DNA和RNA的材料。在此过程中,细胞提供去除活性氧所需的还原能力。注意10。活性氧:在包含氧的分子中,它们是特别反应性的,很薄,例如DNA
大量证据表明,低氧驱动恶性细胞的侵略性分子特征,而与癌症类型无关。非霍奇金淋巴瘤(NHL)是最常见的血液系统恶性肿瘤,其特征是频繁涉及多样的低氧微环境。我们研究了长期深缺氧(1%O2)对淋巴瘤细胞生物学的影响。在缺氧下≥4周,有6种测试的细胞系(RAMOS和HBL2)中只有2个。缺氧适应的(HA)B RAMOS和HBL2细胞的增殖速率降低,伴随着对氧化磷酸化和糖酵解途径的显着抑制。转录组和蛋白质组分析表明,线粒体呼吸复合物I和IV的基因和蛋白质的下调明显下调,以及线粒体核糖体蛋白。尽管观察到了糖酵解的抑制抑制,但对两个HA细胞系的蛋白质组分析表明,与葡萄糖利用的调节有关的几种蛋白质的上调,包括丙酰-4-羟化酶P4HA1的活性催化成分,这是一种重要的可药物果仁。ha细胞系显示自动/线粒体的关键调节剂的转录增加,例如神经蛋白,Bcl2相互作用蛋白3(BNIP3),BNIP3样蛋白和BNIP3 pseudogene。对缺氧的适应性进一步与凋亡失调,即Bcl2l1/bcl-XL的上调,BCl2L11/BIM的过表达,BIM与Bcl-XL的结合增加,显着提高了对A11555463的细胞对A1155463的细胞敏感性的敏感性。负责葡萄糖利用的蛋白质的上调,2。最后,在两个HA细胞系中,Akt激酶均经过过度磷酸化,并且细胞对Copanlisib的敏感性增加,这是PAN-PI3K抑制剂。总而言之,我们的数据报告有关淋巴瘤细胞适应长期缺氧的几种共享机制,包括:1。线粒体蛋白降解潜在的线粒体回收(通过线粒体)和3。增加对BCL-XL和PI3K-AKT信号的依赖性。在翻译中,抑制糖酵解,BCL-XL或PI3K-AKT级联反应可能导致靶向消除HA淋巴瘤细胞。
从近几十年来尖端基因技术的出现将突变归因于癌症,到重新研究癌症内在代谢转变的古老理论(瓦伯格糖酵解),对转移性癌症精准灵丹妙药的探索仍在继续。本综述概述了晚期糖基化终产物 (AGE)-AGE 受体 (RAGE) 通路驱动的复杂致癌线索,从肿瘤细胞对代谢(糖酵解)的依赖开始,发展为恶性肿瘤的转移性出现。转移、化学抗性和癌症复发中强烈的 AGE-RAGE 共存会不利地刺激疾病进展和患者死亡。在癌症代谢和转移转变的结合处,是“糖酵解”产生的 AGE 和 AGE 激活的 RAGE,引发异常的分子通路,最终导致侵袭性恶性肿瘤。作为代谢叛乱的副产物,AGE 会改变代谢组、表观基因组和微生物组,此外还会胁迫细胞内、细胞间和细胞外微环境,从而有利于上皮间质转化 (EMT) 等致癌事件的发生。AGE-RAGE 协同引发 ATP 激增以获得过剩能量,引发自噬以逃避凋亡和产生化学抗性,引发胰岛素样生长因子 1 (IGF-1) 以引发元炎症和血管生成,引发高迁移率族蛋白 1 (HMGB1) 以引发免疫耐受,引发 S100 蛋白以引发转移,引发 p53 蛋白衰减以抑制肿瘤。据报道,AGE 在乳腺癌、前列腺癌、结肠癌和胰腺癌等侵袭性癌症中含量明显高于健康癌症患者,晚期癌症患者中含量高于局限性癌症患者。因此,可以提倡研究个体特有的 AGE、可溶性 RAGE 和 AGE 激活的 RAGE,将其作为诊断、预后和治疗目的的生物标记,以预测糖尿病、肥胖症、代谢综合征患者以及普通人群的癌症风险,监测癌症患者的预后和转移,并估计癌症幸存者的并发症。此外,关于癌症患者外源性(饮食)和内源性(内部形成)AGE 的临床报告以及涉及癌症中 AGE-RAGE 轴的当代临床试验具有治疗诊断意义。
摘要:癌细胞通过糖酵解利用葡萄糖维持肿瘤细胞增殖。然而,长链非编码RNA(lncRNA)对骨肉瘤(OS)细胞糖酵解的影响尚不清楚。本研究旨在探讨lncRNA XLOC_005950/hsa‑microRNA (miR)‑542‑3p/磷酸果糖激酶肌肉(PFKM)轴在OS进展中对葡萄糖代谢、细胞增殖和凋亡的调节作用。通过逆转录定量PCR分析检测OS组织和细胞中lncRNA XLOC_005950、hsa‑miR‑542‑3p和PFKM的表达。利用CRISPR/Cas9基因编辑技术敲除MG63细胞中的lncRNA XLOC_005950表达。通过Cell Counting Kit-8实验、流式细胞术、PFKM活性、葡萄糖和乳酸含量测定,探讨lncRNA XLOC_005950敲除和hsa-miR-542-3p过表达对OS细胞表型的影响。通过双荧光素酶报告基因检测,验证lncRNA XLOC_005950、hsa-miR-542-3p与PFKM的靶向关联。结果表明,lncRNA XLOC_005950在OS组织和细胞中的表达上调。功能实验表明,lncRNA XLOC_005950敲除降低了PFKM活性,降低了细胞内葡萄糖和乳酸含量,抑制了细胞增殖,增加了OS细胞的凋亡。此外,lncRNA XLOC_005950敲除
摘要。葡萄糖酶是一种糖酵解酶,可在糖酵解途径的第一步中催化葡萄糖磷酸化为葡萄糖-6-院子的磷酸化。它还通过催化葡萄糖的磷酸化来调节胰腺β细胞中胰岛素分泌的阈值,并作为葡萄糖传感器起重要作用。葡萄糖酶基因(GCK)中的致病变异引起非促进但持续的轻度禁食性高血糖,也被认为是年轻2的成熟 - 糖尿病(MODY2)。本报告介绍了两个日本兄弟姐妹的Mody2,他们最初被诊断出在20至17岁时被诊断出患有葡萄糖不耐症,后来患有糖尿病。他们没有肥胖史,对胰岛相关的自身抗体为阴性,其血清C肽水平在正常范围内。糖尿病并发症。下一代测序揭示了GCK中的一种新型杂合变体(NM_000162.5:c.1088a> g,p.asp363gly)。此变体以前尚未报道。在使用SIFT和MUTATIONTASTER的计算机功能分析中,表明该变体正在损害。确认突变GCK的功能影响,在HEK293T细胞中暂时表达了hibit标记的p.asp363gly变体和野生型GCK。与表达野生型GCK的细胞相比,表达变体GCK的细胞表现出79%的生物发光,这表明该变体的病理生理学是单倍弥补的结果。