摘要产品特征1。药品的名称:Zepin-400 PR片(延长释放卡马西平片BP 400 mg)2。定性和定量组成:每个延长释放膜涂层片剂都包含:卡马西平片剂BP 400 mg 3。制药形式:白色,细长,胶片涂层的平板电脑在每个平板电脑的一侧和另一侧都有断裂线。4。临床细节:4.1治疗适应症:癫痫卡马西平可以单独或与其他抗癫痫药结合使用。它可用于治疗广义的隆隆声和部分(简单而复杂)的癫痫发作,并且在混合癫痫发作类型的儿童期中也有效。在治疗与脑电图中与3s -1尖峰和波浪相关的缺乏癫痫发作或童年或青春期的肌阵挛性癫痫发作时无效。用卡马西平治疗通常以小剂量开始,然后逐渐增加,直到获得所需的治疗作用。对等离子体卡马西平浓度的监测可以用作获得最佳剂量的一种手段,当使用卡马西平用于联合治疗中时,这可能尤其表明。目的应该是达到17-50 µmol.1 -1之间的等离子卡马西平浓度。如果将患者的治疗更改为卡马西平,则应逐渐将抗癫痫药的剂量逐渐缩减。
创新名称:CorrosionRADAR – CUI 监测系统 被提名人 CorrosionRADAR Ltd 类别:其他 - 监测涂层和衬里仪器仪表阴极保护测试材料设计完整性评估化学处理其他 - 填写 创新开发日期:(从 [2014 年 10 月] 到 [2018 年 10 月])网站:www.corrosionradar.com 摘要描述:CorrosionRADAR (CR) 是英国克兰菲尔德大学的衍生公司,它开创了一种新颖的分布式传感腐蚀监测方法(正在申请专利),该方法特别适用于及早指示隐藏腐蚀位置的问题,例如绝缘层下腐蚀 (CUI)。这些传感器采用细长柔性波导的形式,嵌入在管道或容器外表面附近的绝缘层内。CR 传感器具有最外层的牺牲金属层,在有水的情况下会自我腐蚀,方式与管道表面类似。 CR 传感器使用沿长传感器的微波引导雷达信号激活,波反射的飞行时间定位管道长度上传感器附近的腐蚀和水的存在。它使用工业物联网 (IIoT) 系统来确保这些传感器收集的信息能够被远程访问、存储和处理。CR 技术使 CUI 能够进行预测性维护,收集的数据对 RBI 方法非常有价值。该技术目前处于产品 pi 阶段
� 不卷曲。交织,不缠结 鬃毛 - 坚硬细长的毛发状附属物 灰白色 - 具有浓密的灰白色毛发 刺状 - 具有直的、± 大、刺状的毛发 无毛 - 最初多毛,但逐渐变得无毛 腺状 - 具有肿胀的尖端毛发;带有腺体 多毛 - 具有粗糙或粗糙的± 直立毛发 灰白色 - 参见灰白色 多毛 - 具有直的、± 僵硬的毛发 多毛 - 微小的多毛 硬毛 - 具有长而僵硬的硬毛 多毛 - 微小的多毛 微毛 - 通常是双细胞 [很少是多细胞] 毛发,通常需要复合显微镜放大 大毛:通常是单细胞毛发,在普通解剖显微镜或良好的手柄范围内可见;乳头状 - 具有丘疹状毛发 乳头状 - 参见乳头状 柔毛 - 具有稀疏、细长、柔软的毛发 微柔毛 - 微小的灰白色 短柔毛 - 具有短而柔软、直立的毛发;绒毛状 粗糙 - 具有粗糙、僵硬、上升的毛发;粗糙 绢毛 - 具有长而细的贴伏毛发;丝状 刚毛 - 具有硬毛 刚毛 - 参见刚毛 糙毛 - 具有尖锐、贴伏、坚硬的毛发,这些毛发通常在基部肿胀 茸毛 - 具有浓密、坚固、直的毛发;天鹅绒般 长柔毛 - 具有长而细的柔软(不缠结)的毛发;毛茸茸的
机械超材料最近成为一种有效的平台,可用于设计由几何形状而非成分支配的机械行为系统。[5–8] 虽然最初的努力集中在设计具有线性区域负特性的超材料,[9–12] 但最近有研究表明,通过在架构中引入易发生弹性不稳定的细长元素,可以触发高度非线性响应(通常伴随着较大的内部旋转)。[5,13] 这些非线性行为不仅表现出非常丰富的物理特性,而且还可用于实现高级功能,如形状变形[14,15]、能量吸收[3,16–18]和可编程性。[19–21] 虽然众所周知可以通过改变底层几何形状来调整这些功能,但识别导致目标非线性响应的架构并非易事。已经建立了稳健而高效的算法来指导线性范围内目标响应结构的设计。这些算法包括基于梯度的方法,如形状 [22] 和拓扑 [23] 优化,以及机器学习算法。[24–27] 然而,这些方法不能直接应用于非线性机械超材料的逆向设计。这是因为非线性系统的能量图景通常显示由大能量屏障隔开的多个最小值,因此导航非常具有挑战性。为了有效地探索这样的能量图景,已经成功使用了元启发式算法,如进化策略 [28–30]、遗传算法 [31] 和粒子群优化 [32]。此外,由于这些算法需要多次求解正向问题,最近的努力集中在通过将它们结合起来降低计算成本
案例表现,一名50多岁的男人患有四肢际病史,这是由于汽车事故和慢性便秘,腹泻,下腹痛,恶心和呕吐。CT扫描显示乙状结肠炎和8厘米(最大维度)左下象限小肠质量。剖腹手术显示出完全切除的肠壁中的jejunum质量。对试样的总检查显示了肠壁内柔软的大型乳脂状肿瘤(图1A – C)。显微镜下,样品揭示了由纺锤体细胞实心板组成的侵入性肿瘤(图1D)。纺锤体细胞具有适量的嗜酸性细胞质,过度骨质,卵形对细长核,有些具有突出的核仁。有丝分裂活性是轻快的,具有非典型有丝分裂数字。存在局灶性坏死和出血。免疫染色表明肿瘤细胞的阳性是阳性的AE1/AE3,Vimentin,Ema(焦点)和CAM5.2(焦点)(图2),而CD117,DOG1,CD34,S100,S100,SMA,Desmin,desmin,ck7和ck20(未显示)(未显示)。KI-67增殖指数高达50–60%。 总体发现支持了与小肠的肉眼癌癌相一致的杂质纺锤体肿瘤。KI-67增殖指数高达50–60%。总体发现支持了与小肠的肉眼癌癌相一致的杂质纺锤体肿瘤。
抽象在临床上严重的先天性心脏瓣膜缺陷是由于不当生长和对传单中的心内膜垫子的重塑而产生的。遗传突变已经进行了广泛的研究,但解释了不到20%的病例。通过跳动心脏产生的机械力驱动瓣膜开发,但是这些力如何共同确定阀生长和重塑,仍然是全面了解的。在这里,我们将这些力对阀尺寸和形状的影响解散,并研究YAP途径在确定大小和形状中的作用。低振荡性剪切应力促进瓣膜内皮细胞(VEC)的YAP核易位,而高单向剪切应力限制了细胞质中的YAP。瓣膜间质细胞(VIC)中的静水压缩应力激活的YAP,而拉伸应力停用的YAP。yap激活促进了VIC增殖并增加了瓣膜大小。虽然YAP抑制增强了VEC和受影响瓣膜形状的细胞细胞粘附的表达。最后,在雏鸡胚胎心脏中进行左心房连接,以操纵体内剪切和静水压力。左心室中的受限流动引起的球状和不塑性的左室(AV)阀具有抑制YAP表达。相比之下,持续YAP表达的右AV阀正常增长和细长。这项研究建立了一个简单而优雅的机械生物学系统,通过该系统的转导局部应力调节瓣膜的生长和重塑。该系统将传单带入室发育的适当尺寸和形状,而无需使用遗传规定的时序机制。
在这里,我们重点介绍一个合作项目,旨在开发阿尔茨海默病和帕金森病的新疗法。这项计划得到了 Jim 和 Phyllis Easton 的慷慨捐赠,他们在 Easton 公司和各种体育计划中都有组建成功团队的历史,包括对射箭和奥运会以及加州大学洛杉矶分校田径运动的国内和国际支持。Easton 家族创立并继续支持 Mary S. Easton 阿尔茨海默病中心,以鼓励校园内多个实验室之间的跨学科合作和团队合作,并促进对神经退行性疾病的理解和治疗的创新突破。我们试图设计和测试一种针对导致阿尔茨海默病、帕金森病和各种其他神经系统疾病(统称为“蛋白质病”)的畸形或错误折叠蛋白质的药物。虽然每种疾病都涉及独特的畸形蛋白质,但所有疾病都具有形成细长链或“淀粉样纤维”的共同特征。像僵尸一样,它们将正常蛋白质转化为新的僵尸样纤维,这一过程称为“播种”。然后纤维从一个神经细胞扩散到另一个神经细胞,随着疾病的进展,不可逆转地破坏电路。三个合作团队牵头开展了这个项目。加州大学洛杉矶分校分子生物学研究所的首席结构和计算生物学家 David S. Eisenberg 博士带领他的团队确定了蛋白质结构中的关键毒性区域,并设计了针对这些区域的药物,以减缓或逆转毒性纤维的形成和扩散。加州大学洛杉矶分校神经病理学核心中心的 Harry Vinters 博士及其团队使用了
利用骨料码头是提高和提高软土轴承能力的方法之一。这些码头的最终轴承能力受参数的影响,例如墩的物理特性,结构条件,墩的嵌入深度和piers的替换比,这使轴承能力的估计复杂化。在这项研究中,将基因表达编程方法用于预测用骨料码头增强的粘土土壤的最终轴承能力。For this purpose, two different models were developed, of which the first model (GEP2) utilized two input variables, the undrained shear strength of clay (S u ) and replacement ratio (a r ), while the second model (GEP4) used four input variables including the undrained shear strength of clay (S u ), replacement ratio (a r ), slenderness ratio (S r ), and embedment depth of码头(D F)。GEP2模型的确定系数和GEP4模型分别为0.921和0.942。此外,将该研究的GEP4模型与先前研究的开发模型进行了比较,证实了GEP4模型的出色性能,考虑到输入参数的准确性和数量。敏感性分析的结果表明,粘土(S U),替换比(A R),细长比(S R)和墩的嵌入深度(D F)的未排水剪切强度分别对轴承能力的预测具有最大的影响。此外,参数分析表明,增加S u,a r,s r和d f将提高骨料码头增强粘土的轴承能力。
使用两种不同的快速制造方法 - 电子束添加剂制造(EBAM)和激光净成型(镜头) - 用于制造NITI元素。以电线或球形粉末形式的初始材料的微观结构和马氏体转化温度。使用镜头技术制造的样品在2 26 C(以DSC中的最大Martensite峰值为最大值表示)时显示了马氏体转化温度(MTT),与原粉相比较低。在使用EBAM制造的样品的情况下,MMT达到2 19 C. Martensite和反向转化的峰弥漫,这是由于样品中晶粒尺寸和组成的差异。在500°C下的衰老2小时不仅在两个样品冷却过程中不仅导致R相分离,还导致了更敏锐和更高转化峰的形成,以及MTT向更高温度的转移。微观结构研究显示,柱状晶粒,靠近沉积元件和底板的界面,垂直于板表面生长。谷物沿着生长方向显示轴向纤维纹理。茎显微照片揭示了富含Ti中的细长细胞的存在。在此过程中形成富含Ti的颗粒导致基质中Ti的耗竭,并与初始NITI粉末相比有助于MTT的增加。透镜沉积样品在奥氏体中还包含较高的位错密度。压缩应力/应变样品样品的应变曲线仅显示马氏体的变形,而透镜沉积的变形在压缩模式下显示出几乎完全的超弹性效应,最高3%。
动物质心、椭圆和身份。最粗略地说,动物行为可以通过估计其质心(即中点或重心)随时间的位置来量化。这些质心轨迹被量化为图像坐标序列,反映了动物在其环境中的运动,可用于测量空间导航或运动行为。质心将动物视为一个点,无法捕捉其方向,但可以通过找到环绕动物的椭圆的长轴和短轴来增强这种描述(图 1b)。这是一种方便的通用描述,因为大多数具有中枢神经系统的动物都有相似的身体结构,其中脊髓或腹神经索在细长身体的中心形成一条线。估算质心和椭圆的经典方法主要依赖于背景减法,该算法识别属于动物(即前景)的图像像素,通过找到它们坐标的中点即可计算出质心。当背景与动物形成对比时(例如在背光场所),可以通过对图像强度进行简单的阈值处理来执行背景减法。如果背景是静态的,则可以通过查找中值图像帧来建模;但是,如果动物长时间不动,此方法通常会失败。经典方法采用稳健的算法来建模背景 1 ,但较新的方法已开始使用深度学习来更好地处理更复杂的背景,从而能够在更自然的条件下追踪动物 2 。将椭圆追踪扩展到多种动物使行为描述更加丰富,其中可以使用相对距离和方向等量来推断复杂的社会