可以通过针对结肠靶向药物递送来实现全身毒性的降低,以及结肠疾病(克罗恩,溃疡性结肠炎,肠病,结肠癌)的局部药物递送的高效率。诸如影响药物疗效和递送的pH,细菌,粘液屏障和过境时间。传统的药物向结肠输送方式有其自身的挑战和障碍。因此,针对结肠靶向的主动研究领域是基于纳米技术的药物递送。纳米技术显示出令人鼓舞的结果,例如毒性降低,局部药物递送,提高疗效和感染区域的高积累。,但这些也与限制有关,例如在肠上部吸收药物,粘液捕获,pH引起的变化,酸/酶和爆发现象的药物降解。这些损害了新系统的治疗功效。为了防止这些障碍,需要在药物输送技术方面取得进步,这可以提供高治疗效率。本综述试图解释结肠药物输送的常规方法以及与之相关的挑战。与未来的前景一起讨论了新型药物输送系统的作用及其在结肠靶向中的进展。
常规治疗各种疾病的常规医学已经长期进行。他们治疗局部肠道疾病,例如溃疡性结肠炎,克罗恩病,肠易激综合征,慢性胰腺炎,结肠癌和肠纤维化。据报道,正如克罗恩病患者所观察到的那样,肠纤维化是由于复发性炎症引起的严重和慢性组织损伤引发的(Iswandana等人(Iswandana等),2020)。然而,在治疗过程中发现了几个障碍,例如药物输送的未指定位置,药物剂量往往很高,药物给药的频率经常出现,降低了药物生物利用度,并且出现了全身性副作用。结果,这些障碍降低了药物的有效性(Dugad,2018年),这是开发以结肠靶向药物输送系统(CTDD)的主要原因。
结直肠癌 (CRC) 是一种异质性疾病。传统的二维 (2D) 培养采用细胞系,用于体外研究 CRC 的分子特性。尽管这些细胞系是从癌症发展的肿瘤微环境分离出来的,但由于细胞系无法重现原始肿瘤特征,以及这种 2D 模型缺乏异质性临床肿瘤,与体内情况不同,因此将其转化为人体模型(例如研究药物反应)通常会受到阻碍。这些限制可以通过利用由球体和类器官组成的三维 (3D) 培养来克服。在过去十年中,在优化培养方法以建立包括 CRC 在内的实体肿瘤球体和类器官方面取得了巨大进展,可用于多种目的,包括药物筛选和建立个性化医疗。这些结构已被证明是研究 CRC 进展和揭示其异质性的多功能和稳健模型。本综述将介绍 3D 培养技术的进展以及 CRC 衍生的球体和类器官作为筛选抗癌药物的方式的应用和挑战。
已鉴定出可用于人类炎症性肠病 (IBD) 患者以及大鼠和狗(它们经常用作临床前研究的动物)结肠靶向的多糖。多糖被结肠酶(由细菌分泌)降解,从而触发药物在靶位点的释放。必须指出的是,大鼠、狗和人类的微生物群存在很大差异。因此,在动物身上观察到的这种结肠靶向系统的性能可能无法预测患者的表现。本研究的目的是限制这种风险。将不同的多糖暴露于接种了 IBD 患者、健康狗和“IBD 大鼠”(其中诱发了结肠炎症)粪便样本的培养基中。培养基 pH 值的动态变化被用作细菌增殖的指标,因此,多糖作为其底物的潜力也被用作指标。在 pH 值变化程度及其物种依赖性方面观察到了根本差异。最有前景的多糖被用于制备聚合物薄膜包衣,该包衣包裹着载有 5-氨基水杨酸 (5-ASA) 的起始芯。为了限制多糖在上消化道中过早溶解/肿胀,薄膜包衣中还加入了乙基纤维素。在暴露于接种了 IBD 患者、健康狗和“IBD 大鼠”粪便样本的培养基时监测药物释放。为了进行比较,还测量了纯培养基中的 5- ASA 释放。大多数薄膜包衣表现出高度依赖于物种的药物释放动力学或有限的结肠靶向能力。有趣的是,芦荟和灵芝(一种蘑菇)提取物在所有物种中都表现出结肠靶向的良好潜力。
(图 1)。在造血细胞中,淋巴细胞和髓细胞直接或通过其产生的介质影响肿瘤发展。一般而言,结直肠肿瘤最容易被巨噬细胞滤过,其次是 T 细胞和 B 细胞。4 这些免疫细胞与肿瘤细胞和其他基质细胞相互作用。肿瘤基质决定淋巴细胞、髓细胞、成纤维细胞、内皮细胞、淋巴管和肿瘤细胞之间的相互作用。TME 的不同组成部分会影响临床结果。结直肠肿瘤有不同的类型,每种类型的 TME 特征都不同。例如,具有微卫星不稳定性 (MSI) 的结直肠肿瘤存在 DNA 修复酶缺陷,并且最容易被淋巴细胞滤过。 5 然而,大多数结直肠肿瘤的淋巴细胞浸润水平较低,髓样细胞、内皮细胞和淋巴细胞以及成纤维细胞的密度各不相同。6、7 然而,一组结直肠肿瘤的特点是淋巴细胞浸润水平中等,内皮细胞和成纤维细胞密度高。
抗生素使用是炎症性肠病(IBD)发展的危险因素。IBD的特征是受损的粘液层,该粘液层不会将肠上皮与微生物群区分开。 在这里,我们假设抗生素会影响粘液屏障的完整性,从而使细菌渗透性和易于症状炎症。 我们发现抗生素治疗导致结肠粘液屏障和细菌渗透到粘液层中。 Using fecal microbiota transplant, RNA sequencing followed by ma- chine learning, ex vivo mucus secretion measurements, and antibiotic treatment of germ-free mice, we determined that antibiotics induce endoplasmic reticulum stress in the colon that inhibits colonic mucus secretion in a microbiota-independent manner. 这种抗生素诱导的粘液分泌缺陷导致细菌渗透到结肠粘液层中,将微生物抗原转移到循环中,并在IBD小鼠模型中加剧溃疡。 因此,抗生素的使用可能会通过阻碍粘液产生而易于肠道炎症。IBD的特征是受损的粘液层,该粘液层不会将肠上皮与微生物群区分开。在这里,我们假设抗生素会影响粘液屏障的完整性,从而使细菌渗透性和易于症状炎症。我们发现抗生素治疗导致结肠粘液屏障和细菌渗透到粘液层中。Using fecal microbiota transplant, RNA sequencing followed by ma- chine learning, ex vivo mucus secretion measurements, and antibiotic treatment of germ-free mice, we determined that antibiotics induce endoplasmic reticulum stress in the colon that inhibits colonic mucus secretion in a microbiota-independent manner.这种抗生素诱导的粘液分泌缺陷导致细菌渗透到结肠粘液层中,将微生物抗原转移到循环中,并在IBD小鼠模型中加剧溃疡。因此,抗生素的使用可能会通过阻碍粘液产生而易于肠道炎症。
摘要:结直肠癌(CRC)是全球最常见的疾病之一。肿瘤免疫治疗是一种创新的癌症治疗方法,通过激活人体的自身免疫系统发挥作用。免疫检查点阻断已被证明对DNA缺陷错配修复/微卫星不稳定性高的CRC有效。但对于熟练错配修复/微卫星稳定性患者的治疗效果仍需进一步研究和优化。目前,CRC的主要策略是联合其他治疗方法,如化疗、靶向治疗和放疗。本文,我们回顾了免疫检查点抑制剂在CRC治疗中的现状和最新进展。同时,我们考虑了将冷转热的治疗机会,以及未来可能的治疗方法的前景,这些治疗方法可能对耐药患者有很大的需求。关键词:免疫检查点抑制剂,结直肠癌,PD-1/PD-L1,联合治疗,DNA错配修复
1。荷兰乌得勒支大学医学中心Wilhelmina儿童医院小儿胃肠病学系2.再生医学中心Utrecht,Uppsalalaan 8,3584 Ct Utrecht,荷兰3。胃肠病学,肝病学和营养,波士顿儿童医院儿科,马萨诸塞州波士顿,马萨诸塞州02115,美国4。玛雅西玛公主小儿肿瘤学中心,荷兰乌得勒支5.Hubrecht研究所,荷兰皇家艺术与科学学院和大学医学中心乌得勒支,荷兰6.海德尔伯格兰公主小儿肿瘤学中心25,3584 CS UTRECHT,荷兰7.目前的地址:制药,研究和早期开发,F。Hoffmann-La Roche Ltd,瑞士巴塞尔8.荷兰乌得勒支大学医学中心实验心脏病学实验室。9。临床化学和血液学实验室,分区实验室和药房,大学医学中心乌得勒支,荷兰大学乌得勒支的实验室10.
摘要背景/目的:染色体不稳定性是不同类型癌症(包括结直肠癌)进展的一个众所周知的因素。染色体不稳定性导致严重的核型重排和非整倍体。四倍体构成了致癌过程中多倍体/非整倍体级联的中间阶段,四倍体细胞对化疗特别有抵抗力。抑制有丝分裂蛋白 polo 样激酶 1 (PLK1) 是否会阻止四倍体结肠癌细胞的存活尚不清楚。方法:用 siPLK1 转染二倍体和四倍体细胞或用 PLK1 抑制剂 Bi2536 与纺锤体毒药联合处理。通过结晶紫染色和克隆形成测定评估细胞毒性。流式细胞术评估分析了许多细胞凋亡参数和细胞周期阶段。使用 CompuSyn 软件计算了 Bi2536 与紫杉醇、长春新碱或秋水仙碱之间的协同作用。结果:抑制或消除 PLK1 可阻止结肠癌细胞(特别是四倍体细胞)的存活。PLK 抑制引起的细胞死亡是由于有丝分裂滑移,随后激活了细胞凋亡的内在途径。我们进一步证明,用 PLK1 抑制剂和微管聚合抑制剂长春新碱或秋水仙碱(而不是微管解聚抑制剂紫杉醇)联合治疗四倍体结肠癌细胞会产生致命的协同效应。结论:PLK1 抑制与微管靶向化学物质相结合,可作为针对四倍体癌细胞的有效治疗策略。
ALDH1A、Oct4 和 Nanog 等癌症干细胞标志物的表达可诱导癌细胞干性、增加转移并抑制癌细胞凋亡 (4)。此外,癌细胞的耐药性也是 CRC 治疗失败的原因。耐药性限制了化疗效果,并与 DNA 修复过程的改善和药物外排泵机制有关 (5, 6)。最近的研究表明,分子靶向疗法可能是治疗 CRC 的有效方法 (7-9)。因此,发现新的靶点和开发新的治疗方法对于 CRC 的治疗至关重要。细胞朊病毒蛋白 (PrP C ) 是一种糖基磷脂酰肌醇锚定蛋白,在神经和其他组织中表达,调节多种细胞过程,如细胞死亡、存活、增殖和分化 (10, 11)。 PrP C 的错误折叠与神经退行性疾病有关,例如传染性海绵状脑病和朊病毒病(12)。越来越多的证据表明,PrP C 对多种癌症中癌细胞的增殖、转移和耐药性等功能有显著影响(13,14)。最近的一项研究表明,缺氧会增加 PrP C 的表达,而 PrP C 则会调节 CRC 细胞中的癌症干细胞标志物(15)。在胃癌患者中,PrP C 的表达与癌细胞侵袭和淋巴结转移之间的相关性也已被证实(16)。此外,PrP C /P-糖蛋白 (P-gp) 复合物的形成也会增加乳腺癌细胞对紫杉醇的耐药性(17)。虽然目前已有许多关于朊病毒对癌细胞增殖、转移及耐药性影响的研究,但关于PrP C对CRC细胞中癌症干细胞标志物表达、迁移、侵袭及耐药性影响的研究尚不足。本研究主要探讨PrP C对肿瘤干细胞特性(如肿瘤球形成、癌症干细胞标志物表达)的影响,以及朊病毒蛋白对CRC细胞迁移、侵袭及耐药性的影响。