MS人工智能(AI)课程清单预备课程,您鼓励您参加旨在帮助您填补有限的背景知识或技能的预备课程,包括编程或数学基础。MS最多可以将这些预备课程的学分最多授予:CS 5007编程概念,数据结构和算法简介这是一门入门的毕业生课程,教授核心计算机科学主题,通常是在本科生计算机科学课程中建立的,但在研究生级别的课程中。它主要是针对计算机科学几乎没有正式准备的学生,以获得基本计算机科学主题的经验。在审查编程概念之后,该课程的重点将从对数据执行的操作的角度来看,并将分析和设计技术应用于对数据结构作用的非数字算法。所涵盖的数据结构包括列表,堆栈,队列,树和图形。项目将着重于编写程序,以适当整合各种应用程序的数据结构和算法。本课程不可用来满足B.S.,M.S.或Ph.D.的学位要求。计算机科学学位或计算机科学辅修学位。它可以根据计划审查委员会的特定学位酌情满足其他学位课程的要求。该课程为学生提供了对操作系统的基本组件的了解,包括流程,同步和内存管理。先决条件:具有至少一种高级编程语言的经验,例如在本科编程课程CS 5008 Systems和Network编程介绍中获得的,本课程侧重于重要的编程项目,并概述了计算机网络和通用操作系统的原理。该课程使学生接触了Internet协议套件网络层,同时向无线网络和互联网流量注意事项等主题提供了介绍。目的是从设计和性能的角度专注于对操作系统和计算机网络体系结构的基本概念的理解。学生将有望设计和实施各种编程项目,以了解操作系统和网络技术的设计。本课程不可用来满足B.S.,M.S.或Ph.D.的学位要求。计算机科学学位或计算机科学辅修学位。它可以根据计划审查委员会的特定学位酌情满足其他学位课程的要求。
摘要 — 量子算法旨在在基于门的量子计算机中处理量子数据(量子比特)。经严格证明,当输入是某些量子数据或映射到量子数据的某些经典数据时,它们比传统算法具有量子优势。然而,在实际领域,数据本质上是经典的,它们的维度、大小等都非常大。因此,将经典数据映射(嵌入)到量子数据是一个挑战,甚至在基于门的量子计算机中处理映射的经典数据时,量子算法相对于传统算法没有量子优势。对于地球观测(EO)的实际领域,由于遥感平台上的传感器不同,我们可以将某些类型的 EO 数据直接映射到量子数据。特别是,我们有以极化光束为特征的极化合成孔径雷达(PolSAR)图像。极化光束的偏振态和量子比特是物理状态的分身。我们将它们相互映射,并将这种直接映射称为自然嵌入,否则称为人工嵌入。此外,我们使用量子算法在基于门的量子计算机中处理自然嵌入的数据,而不管其相对于传统技术的量子优势如何;即,我们使用 QML 网络作为量子算法来证明我们自然地将数据嵌入基于门的量子计算机的输入量子位中。因此,我们在 QML 网络中使用并直接处理了 PolSAR 图像。此外,我们设计并提供了一个带有额外神经网络层的 QML 网络,即混合量子经典网络,并演示了在使用和处理 PolSAR 图像时如何编程(通过优化和反向传播)这种混合量子经典网络。在这项工作中,我们使用了 IBM Quantum 提供的基于门的量子计算机和基于门的量子计算机的经典模拟器。我们的贡献是,我们提供了具有自然嵌入特征(量子位的 Doppelganger)的非常具体的 EO 数据,并在混合量子经典网络中对其进行了处理。更重要的是,在未来,这些极化SAR数据可以通过未来的量子算法和未来的量子计算平台进行处理,以获得(或展示)相对于传统EO问题技术的量子优势。索引词——自然嵌入、参数化量子电路、极化合成孔径雷达(PolSAR)、量子机器学习(QML)。I.引言最近在构建基于门的量子计算机方面取得了突破,该计算机仅使用极少的量子比特[1]
我们生活在一个信息爆炸和数字革命的时代,这导致了生活不同方面的技术快速发展。人工智能(AI)在这场数字化转型中发挥着越来越重要的作用。AI应用需要具有低延迟连接的边缘云计算,而其中最大的挑战是它需要大量的计算机处理能力。最近,基于光学硬件的AI实现[1-5]因其从根本上降低功耗和加快计算速度而成为热门话题。另一方面,作为现代电信和数据通信的基础,光网络变得越来越复杂,数据和连接越来越多。生成、传输和恢复如此大容量的数据需要具有高性能、高成本和高功耗效率的先进信号处理和网络技术。AI对于表现出复杂行为的系统的优化和性能预测特别有用[6-20]。在这方面,传统的信号处理算法可能不如AI算法高效。人工智能方法近期已进入光学领域,涉及量子力学、纳米光子学、光通信和光网络。特刊旨在将光学和人工智能结合起来,以应对各自面临的难以单独解决的挑战。特刊精选了 12 篇论文,代表了光学和人工智能相结合领域令人着迷的进展,从光子神经网络 (NN) 架构 [5] 到人工智能在光通信中的进展,包括物理层收发器信号处理 [10-17] 和网络层性能监控 [18,19],以及人工智能在量子通信中的潜在作用 [20]。光子神经网络架构:石斌等人提出了一种基于广播和权重方法的新型光子加速器架构,通过光子集成交叉连接实现深度 NN [5]。测试了一个用于图像分类的三层 NN,结果表明每个光子神经层都可以达到高于 85% 的准确率。它为设计可扩展到更高维度的光子 NN 以解决更高复杂度的问题提供了见解。正如书中所反映的那样,人工智能的应用,尤其是机器学习在光通信领域的应用更受欢迎。在物理收发器层,讨论最多的话题是使用机器学习来减轻从短距离到长距离应用的光通信系统中的各种线性和非线性影响。用于短距离光通信的人工智能:对于短距离可见光通信,陈晨等人引入了一种概率贝叶斯学习算法来补偿发光二极管
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
在过去十年中,图形处理单元 (GPU) 的进步推动了人工智能 (AI)、高性能计算 (HPC) 和数据分析领域的重大发展。要在这些领域中的任何一个领域继续保持这一趋势,就需要能够不断扩展 GPU 性能。直到最近,GPU 性能一直是通过跨代增加流式多处理器 (SM) 的数量来扩展的。这是通过利用摩尔定律并在最先进的芯片技术节点中使用尽可能多的晶体管数量来实现的。不幸的是,晶体管的缩放速度正在放缓,并可能最终停止。此外,随着现代 GPU 接近光罩极限(约 800 平方毫米),制造问题进一步限制了最大芯片尺寸。而且,非常大的芯片会导致产量问题,使大型单片 GPU 的成本达到不理想的水平。GPU 性能扩展的解决方案是将多个物理 GPU 连接在一起,同时向软件提供单个逻辑 GPU 的抽象。一种方法是在印刷电路板 (PCB) 上连接多个 GPU。由于提供的 GPU 间带宽有限,在这些多 GPU 系统上扩展 GPU 工作负载非常困难。封装内互连(例如通过中介层技术)比封装外互连提供更高的带宽和更低的延迟,为将 GPU 性能扩展到少数 GPU 提供了一个有希望的方向 [1]。晶圆级集成更进一步,通过将预制芯片粘合在硅晶圆上,为具有数十个 GPU 的晶圆级 GPU 提供了途径 [2]。不幸的是,使用电互连在长距离上以低功耗提供高带宽密度从根本上具有挑战性,从而限制了使用电中介层技术进行 GPU 扩展。在本文中,我们提出了光子晶圆网络 (NoW) GPU 架构,其中预先制造和预先测试的 GPU 芯片和内存芯片安装在晶圆级中介层上,该中介层通过光子网络层连接 GPU 芯片,同时将每个 GPU 芯片与其本地内存堆栈电连接,如图 1 所示。光子-NoW GPU 架构的关键优势在于能够在相对较长的晶圆级距离(高达数十厘米)内以低功耗实现高带宽密度。本文的目标是展示光子-NoW 的愿景
神经系统和神经发育疾病是主要的公共卫生问题,迫切需要新的治疗方法。有效疗法的开发依赖于对与行为产生因果关系有关的神经基质的精确映射。目前,在清醒手术中的认知和神经监测期间进行的直接电刺激 (DES) 被认为是脑功能因果映射的黄金标准。然而,DES 受到刺激部位局部性的限制,阻碍了在网络层面上对人类大脑功能的真正整体探索。我们使用了来自 612 名胶质瘤患者的 4137 个 DES 点,结合人类连接组数据(静息态功能 MRI,n = 1000 和扩散加权成像,n = 284),以提供对包含 12 个不同行为域的因果宏观功能网络的多模态描述。为了探究我们程序的有效性,我们 (i) 比较了健康和临床人群的网络拓扑图;(ii) 测试了 DES 衍生网络的预测能力; (iii) 量化结构和功能连接之间的耦合;(iv) 建立一个多变量模型,能够量化单个受试者与规范人群的偏差。最后,我们通过测试 DES 衍生的功能网络在识别与术后语言缺陷相关的关键神经调节靶点和神经基质方面的特异性和敏感性,探究了 DES 衍生的功能网络的转化潜力。与单独使用 DES 相比,DES 和人类连接组数据的组合导致全脑覆盖率平均增加 29.4 倍。DES 衍生的功能网络可以预测未来的刺激点(准确率为 97.8%),并得到皮层下刺激的解剖连接的强烈支持。我们没有观察到患者和健康人群在群体和单个受试者层面上存在任何显著的拓扑差异。通过展示具体的临床应用,我们发现 DES 衍生的功能网络与多个功能域中的有效神经调节目标重叠,在使用不同刺激技术的颅内刺激点进行测试时表现出高度特异性,并且可以有效地用于表征术后行为缺陷。DES 与人类连接组的整合从根本上提高了 DES 或单独功能成像提供的功能映射的质量。DES 衍生的功能网络可以可靠地预测未来的刺激点,与底层白质具有很强的对应性,并且可以用于患者特定的功能映射。可能的应用范围从精神病学和神经病学到神经心理学、神经外科和神经康复。
FCC 事实说明书 * 人工智能技术对保护消费者免受不受欢迎的自动呼叫和机器人短信的影响 CG 案卷号中的拟议规则制定通知23-362 背景:《电话消费者保护法》 (TCPA) 限制自动呼叫和机器人短信,除非被叫方事先明确同意或获得公认的豁免。委员会已明确表示,消费者有权通过行使同意或撤销接收此类通信的权力来决定他们希望接收哪些自动呼叫或机器人短信。生成内容的人工智能 (AI) 技术正变得越来越普遍,可以执行以前需要人工操作的任务。在本拟议规则制定通知中,我们提出了保护消费者免受自动呼叫和机器人文本中人工智能滥用的措施,同时采取行动为人工智能的积极使用扫清道路,包括将其用于改善残疾人士对电话网络的访问。通知将做什么: • 建议将“人工智能生成的呼叫”定义为“使用任何技术或工具人工生成语音或文本的呼叫,使用计算技术或其他机器学习,包括预测算法和大型语言模型,处理自然语言并生成语音或文本内容,通过拨出电话与被叫方进行通信。” • 建议要求使用人工智能生成的人工或预录语音消息拨打电话的呼叫者明确且显眼地披露,消费者同意接收人工和预录呼叫可能包括同意接收人工智能生成的呼叫。• 建议要求拨打包含人工智能生成内容的自动拨号短信的呼叫者提供明确和显眼的披露,即消费者同意接收此类消息可能包括同意接收我们上述提案定义的人工智能生成内容。• 建议要求使用人工智能生成语音的呼叫者在每次通话开始时向被叫方明确披露该通话正在使用人工智能生成的技术。• 建议将患有言语或听力障碍的个人使用任何技术(包括人工智能技术)拨打的人工或预录语音电话排除在 TCPA 要求之外,这些技术旨在促进此类个人通过电话进行交流的能力。• 就设备或网络层面上技术的开发和可用性征求意见,这些技术可以检测潜在的欺诈性来电和/或使用基于通话内容实时分析的人工智能生成的语音,提醒消费者此类通话可能是欺诈性或人工智能生成的,并可能阻止可根据分析识别为类似的未来通话。• 就实时基于内容的呼叫检测、警报和阻止技术对隐私的影响征求意见,以及委员会是否应考虑保护被叫方和呼叫者隐私的要求,如果是,这些要求应该是什么。
第一章区块链技术概述 1. 人工智能AI,区块链Blockchain,云计算Cloud 和数据科学Data Science。 人工智能:生产力变革。大数据:生产资料变革。区块链:生产关系变革。 2. 可信第三方: 交易验证,交易安全保障,历史记录保存->价格昂贵,交易速 度嘛,欺诈行为。 区块链: 去中心的清算,分布式的记账,离散化的支付。任 何达成一致的无信任双方直接交易,不需要第三方中介。注意:信用破产,绝 对中心化,不透明无监管。 3. 区块链: 用于记录比特币交易账目历史的数据结构,每个区块的基本组成都 由上个区块的散列值、若干条交易及一个调节数等元素构成,矿工通过工作量 证明来维持持续增长、不可篡改的数据信息。区块链又称为分布式账本,是一 种去中心化的分布式数据库。 区块链技术 是在不完全可信的环境中,通过构建 点对点网络,利用链式数据结构来验证与存储数据,借助分布式共识机制来确 定区块链结构,利用密码学的方式保证数据传输和访问的安全,利用由自动化 脚本代码组成的智能合约来编程和操作数据。 4. 体系结构:数据层: 封装了区块链的底层数据存储和加密技术。每个节点存 储的本地区块链副本可以被看成三个级别的分层数据结构:区块链、区块、区 块体。每个级别需要不同的加密功能来保证数据的完整性和真实性。 网络层: 网格网络,权限对等、数据公开,数据分布式、高冗余存储vs 轴辐网络,中央 服务器分配权限,多点备份、中心化管理。 共识层: 能够在决策权高度分散的 去中心化系统中使得各节点高效地针对区块数据的有效性达成共识。出块节点 选举机制和主链共识共同保证了区块链数据的正确性和一致性,从而为分布式 环境中的不可信主体间建立信任关系提供技术支撑。 激励层: 经济因素集成到 区块链技术体系中,包括经济激励的发行机制和分配机制等。公有链:激励遵 守规则参与记账的节点,惩罚不遵守规则的节点,使得节点最大化自身收益的 个体理性行为与保障去中心化的区块链系统的安全和有效性的整体目标相吻合, 整个系统朝着良性循环的方向发展。私有链:不一定激励,参与记账的节点链 外完成博弈,通过强制力或自愿参与记账。 合约层: 封装区块链系统的各类脚 本代码、算法以及由此生成的更为复杂的智能合约。数据、网络和共识三个层 次作为区块链底层“虚拟机”分别承担数据表示和存储、数据传播和数据验证功能, 合约层建立在区块链虚拟机之上的商业逻辑和算法,是实现区块链系统灵活编 程和操作数据的基础。智能合约是一个在计算机系统上,当一定条件被满足的 情况下,可以被自动执行的合约(程序)区块链上的智能合约,一是数据无法 删除、修改,保证了历史的可追溯,作恶成本很高,其作恶行为将被永远记录; 二是去中心化,避免了中心化因素的影响。 应用层: 区块链技术是具有普适性 的底层技术框架,除可以应用于数字加密货币外,在经济、金融和社会系统中 也存在广泛的应用场景。 5. 区块链特征 :去中心,去信任;开放,共识;交易透明,双方匿名;不可篡 改,可追溯。 区块链分类: 公有链: 无官方组织及管理机构,无中心服务器, 参与的节点按照系统规则自由接入网络、不受控制,节点间基于共识机制开展 工作。 联盟链: 由若干机构联合发起,介于公有链和私有链之间,兼具部分去 中心化的特性。 私有链: 建立在某个组织内部,系统的运作规则根据组织要求 设定,修改甚至是读取权限仅限于少数节点,同时仍保留着区块链的真实性和 部分去中心化特征。 无许可区块链: 一种完全去中心化的分布式账本技术,允 许节点自由加入和退出,无需通过中心节点注册、认证和授权,节点地位平等, 共享整个账本。 许可区块链: 存在一个或多个具有较高权限的节点,可以是可 信第三方,也可以是协商制定有关规则,其他节点只有经过相应授权后才可访 问数据,参与维护。 6. 数字货币:区块链1.0 旨在解决交易速度、挖矿公平性、能源消耗、共识方 式以及交易匿名等问题,参照物为比特币(BTC)。区块链2.0 旨在解决数据隐 私、数据存储、区块链治理、高吞吐量、域名解析、合约形式化验证等问题, 参照物为以太坊(ETH)。