Loading...
机构名称:
¥ 1.0

我们生活在一个信息爆炸和数字革命的时代,这导致了生活不同方面的技术快速发展。人工智能(AI)在这场数字化转型中发挥着越来越重要的作用。AI应用需要具有低延迟连接的边缘云计算,而其中最大的挑战是它需要大量的计算机处理能力。最近,基于光学硬件的AI实现[1-5]因其从根本上降低功耗和加快计算速度而成为热门话题。另一方面,作为现代电信和数据通信的基础,光网络变得越来越复杂,数据和连接越来越多。生成、传输和恢复如此大容量的数据需要具有高性能、高成本和高功耗效率的先进信号处理和网络技术。AI对于表现出复杂行为的系统的优化和性能预测特别有用[6-20]。在这方面,传统的信号处理算法可能不如AI算法高效。人工智能方法近期已进入光学领域,涉及量子力学、纳米光子学、光通信和光网络。特刊旨在将光学和人工智能结合起来,以应对各自面临的难以单独解决的挑战。特刊精选了 12 篇论文,代表了光学和人工智能相结合领域令人着迷的进展,从光子神经网络 (NN) 架构 [5] 到人工智能在光通信中的进展,包括物理层收发器信号处理 [10-17] 和网络层性能监控 [18,19],以及人工智能在量子通信中的潜在作用 [20]。光子神经网络架构:石斌等人提出了一种基于广播和权重方法的新型光子加速器架构,通过光子集成交叉连接实现深度 NN [5]。测试了一个用于图像分类的三层 NN,结果表明每个光子神经层都可以达到高于 85% 的准确率。它为设计可扩展到更高维度的光子 NN 以解决更高复杂度的问题提供了见解。正如书中所反映的那样,人工智能的应用,尤其是机器学习在光通信领域的应用更受欢迎。在物理收发器层,讨论最多的话题是使用机器学习来减轻从短距离到长距离应用的光通信系统中的各种线性和非线性影响。用于短距离光通信的人工智能:对于短距离可见光通信,陈晨等人引入了一种概率贝叶斯学习算法来补偿发光二极管

“人工智能的光学和光学的人工智能”特刊

“人工智能的光学和光学的人工智能”特刊PDF文件第1页

“人工智能的光学和光学的人工智能”特刊PDF文件第2页

“人工智能的光学和光学的人工智能”特刊PDF文件第3页