心肌已经进化为有节奏的方式收缩,以从心脏向身体提供血液。心肌的机械活性起源于肉瘤,由三个纤维组成[即厚而薄的纤维和薄的纤维和巨大的弹性蛋白钛(Connectin)]。心脏研究人员已经开发并应用了各种新技术,以阐明心脏中肉瘤功能的深入机理(Fukuda等,2021及其中的相关文章)。现在越来越清楚的是,肉瘤在调节心脏动态,成长和重塑的过程中起关键作用。这些特殊技术为促进顽固性心脏病的新药物提供了新的前景。生理学领域的研究主题是十本原始研究和审查论文的集合,展示了心肌生理学和病理生理学的最新研究以及未来的方向。早期,人们认为心脏肌感冒的收缩仅通过薄薄的结构变化受到调节。也就是说,在松弛条件下,肌钙蛋白(TN)和肌球蛋白(TM)复合物阻断肌球蛋白与肌动蛋白的结合(“ OFF”状态)。Following an increase in the intracellular Ca 2+ concentration ([Ca 2+ ] i ), the binding of Ca 2+ to TnC (one of the three subunits of Tn) causes displacement of Tm on thin fi laments ( “ on ” state), allowing myosin to interact with actin, and as a result, active force is generated (see Kobirumaki- Shimozawa et al., 2014 and references therein).减少在这里,重要的是,诸如Actomyosin-ADP复合物之类的强结合跨桥,消除TN-TM的抑制作用,与Ca 2+协同作用,并进一步激活薄纤维(Kobirumaki-Shimozawa等人,2014年,2014年和参考文献)。在2010年,罗杰·库克(Roger Cooke)组做出了开创性的发现,表明肌球蛋白分子可以处于ATP周转率极低的状态(Stewart等,2010)。这个小说的放松状态被广泛称为“超级省脉状态”(SRX)(例如Cooke,2011; Irving,2017; Craig andPadrón,2022年)。srx与“无序 - 删除状态”(DRX)处于平衡状态,其中肌球蛋白头靠近薄纤维,并且可以很容易地与肌动蛋白结合(例如Cooke,2011; Fusi等,2015)。
1 苏丹杰济拉大学药学院药物化学系,2 苏丹杰济拉大学药学院药剂学系,3 苏丹喀土穆大学药学院药物化学系,4 沙特阿拉伯阿尔哈吉 Prince Sattam Bin Abdulaziz 大学药学院生药学系,5 苏丹喀土穆大学药学院生药学系,6 埃及曼苏拉曼苏拉大学药学院生药学系,7 沙特阿拉伯麦加乌姆古拉大学药学院临床药学系,8 沙特阿拉伯麦地那 Al-Munawwarah 泰巴大学药学院药理学与毒理学系阿拉伯、9 沙特阿拉伯麦地那泰巴大学药学院药剂学和制药技术系、10 沙特阿拉伯吉达巴特吉医学院化学系预科课程、11 埃及艾斯尤特大学药学院生药学系、12 沙特阿拉伯吉达阿卜杜勒阿齐兹国王大学药学院天然产物和替代医学系
骨骼肌收缩肌纤维的形成是一个复杂过程,若受到干扰则会导致肌营养不良。在此,我们提供了三种不同斑马鱼突变体的 mRNAseq 数据集,这些突变体在胚胎发生过程中影响肌肉组织。这些突变体包括肌球蛋白折叠伴侣 unc45b (unc45b/)、热休克蛋白 90aa1.1 (hsp90aa1.1/) 和乙酰胆碱酯酶 (ache/) 基因。在受精后 72 小时 (hpf) 对这三个突变体进行了重复实验中的转录组分析,并对 unc45b/ 进行了另外两个发育时间 (24 hpf 和 48 hpf)。通过层次聚类分析了总共 20 个样本以查找差异基因表达。本研究的数据支持 Etard 等人的观察结果。 (2015) [1] ( http://dx.doi.org/10.1186/s13059-015-0825-8 ) 肌球蛋白折叠失败会激活骨骼肌中独特的转录程序,该程序与应激肌肉细胞中诱导的程序不同。 & 2016 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可协议开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )。
首批用于治疗心力衰竭的基因疗法正在临床上取得进展。Rocket Pharmaceuticals 计划很快启动一项关键的 II 期研究,研究一种针对 Danon 病患者的基因疗法。Danon 病是一种 X 连锁显性遗传疾病,会导致成年早期进行性心力衰竭和死亡。如果成功,该试验将鼓励大量基因药物开发者(表 1)相信,在不同的疾病环境下,抑制甚至逆转进行性心力衰竭是可行的。此外,德克萨斯大学西南医学中心 Eric Olson 实验室的三篇具有里程碑意义的论文和哈佛医学院 Christine Seidman 实验室的一项补充研究表明,CRISPR-Cas9 编辑、碱基编辑和主要编辑都可用于纠正小鼠心脏病的遗传模型。现在已经建立了技术概念验证,用于治疗由 MYH7 和 RBM20 基因突变引起的心肌病,以及破坏由钙/钙调蛋白依赖性蛋白激酶 IIδ 慢性过度激活引起的病理信号传导机制,这种机制存在于许多心力衰竭患者中。该领域的一个重要里程碑是 FDA 去年批准百时美施贵宝的口服心脏肌球蛋白抑制剂 Camzyos (mavacamten) 用于治疗阻塞性肥厚性心肌病 (HCM)。Camzyos 是首个针对最常见的遗传性心脏病的潜在病理的疗法。最初由 MyoKardia 公司开发,该公司由 Christine Seidman 和她的丈夫 Jonathan Seidman(也是哈佛医学院的学生)创立,后来被 Bristol Myers Squibb 收购,其工作原理是降低肌动蛋白和肌球蛋白之间过度形成横桥而引起的收缩力升高,肌动蛋白和肌球蛋白是负责产生力量的蛋白质,使肌肉
摘要 4 AM 和 0.5 AM 钒 (V) [V(V),钒酸盐] 分别完全抑制了脱膜海胆精子鞭毛和用 0.1 mM ATP 重新激活的胚胎纤毛的运动能力。0.5-1 AM V(V) 可抑制潜伏形式的动力蛋白 1 的 Mg2+ 激活 ATPase 活性 (ATP 磷酸水解酶,EC 3.6.1.3) 50%,而 Ca2+ 激活 ATPase 活性则不那么敏感。V(V) 对鞭毛摆动频率和动力蛋白 1 ATPase 活性的抑制似乎不是与 ATP 竞争的。与其他报告一致的是,V(V) 对 (NaK)ATPase 的抑制在 ATP 存在下起效较慢,而在 ATP 不存在下起效相对较快。然而,对于动力蛋白,无论是否存在 ATP,抑制都会以快速的速度发生。浓度为 1 mM 的儿茶酚可逆转 V(V) 对重新激活的精子运动、动力蛋白 ATPase 和 (NaK)ATPase 的抑制。浓度高达 500 AM 的 V(V) 对肌球蛋白和肌动球蛋白 ATPase 均无抑制作用。V(V) 的抑制提供了一种可能的技术,用于区分动力蛋白和肌球蛋白在不同形式的细胞运动中的作用。
1 Gaziantep大学医学院医学药理学系,27310,Gaziantep,Turkiye 2,Turkiye 2生理学系,Gaziantep大学医学院,Gaziantep大学,27310 Gaziantep,Turkiye,Turkiye通讯作者Turkiye,电子邮件:demiryurek@gaziantep.edu.tr收到:2023年6月23日接受:2023年8月17日出版:2023年8月29日,引用了本文:DemirkıranC,Demiryürekis,Demiryürek。 (2023)。 肥厚性心肌病治疗的最新趋势:心脏肌球蛋白抑制剂。 药理学的最新趋势,第1卷,第2期:110-122。 摘要1 Gaziantep大学医学院医学药理学系,27310,Gaziantep,Turkiye 2,Turkiye 2生理学系,Gaziantep大学医学院,Gaziantep大学,27310 Gaziantep,Turkiye,Turkiye通讯作者Turkiye,电子邮件:demiryurek@gaziantep.edu.tr收到:2023年6月23日接受:2023年8月17日出版:2023年8月29日,引用了本文:DemirkıranC,Demiryürekis,Demiryürek。(2023)。肥厚性心肌病治疗的最新趋势:心脏肌球蛋白抑制剂。药理学的最新趋势,第1卷,第2期:110-122。摘要
使用的缩写:ACK,激活的CDC42相关酪氨酸激酶; GEF,鸟苷核苷酸交换因子; PH,Pleckstrin同源性; DH,DBL同源性; PIP 2,磷脂酰肌醇4,5-双磷酸;间隙,GTPase激活蛋白; GDI,鸟苷核苷酸解离抑制剂; SRF,血清反应因子; NF-κB,核因子κB; Jnk,c-jun n末端激酶;婴儿床,cdc42/rac-Interactive结合; REM,Rho ectector同源性; RKH,ROK – Kinectin同源性; MLC,肌球蛋白轻链; PI-4-P5K,磷脂酰肌醇-4-磷酸5-激酶; GTP [s],鸟嘌呤5« - [γ -thio]三磷酸; MAP激酶,有丝分裂原激活的蛋白激酶; MLK,混合细胞激酶; ACC,反平行线圈; BTK,布鲁顿的酪氨酸激酶; MBS,肌球蛋白结合亚基; ERM,Ezrin/radixin/Moesin; FH,形态学;黄蜂,Wiskott-Aldrich-Syndrome蛋白;波浪,黄蜂样的垂直蛋白质蛋白; lim激酶; EGF,表皮生长因子; TNFα,肿瘤坏死因子α; Mekk,地图激酶激酶激酶; PAK,P21激活的激酶; PKN,蛋白激酶N; MRCK,肌发育症激酶相关的CDC42结合激酶。1应向谁致辞(电子邮件Anne.bishop!ucl.ac.uk)。
呼吸机诱导的隔膜功能障碍(VIDD)是需要机械通气(MV)和神经肌肉阻滞(NMBA)的重症监护单元(ICU)治疗的常见续集。它的特征是隔膜无力,延长的呼吸器断奶和不良后果。解离性糖皮质激素(例如Vamorolone,VBP-15)和伴侣共同诱导剂(例如BGP-15)先前在ICU-RAT模型中显示出积极影响。在肢体肌肉疾病肌病中,优先肌球蛋白损失占上风,而肌纤维蛋白翻译后修饰在VIDD中更为主导。尚不清楚特定力的明显下降(归一化为横截面区域)是否是收缩性信号变化的纯粹结果,或者隔膜弱点是否也通过肌球的细胞体系结构来迅速发展,以及vbp-15或BGP-15或BGP-15的范围,通过肌发光的细胞体系结构来实现结构性相关。为了解决这些问题,我们进行了无标签的多光子第二次谐波产生(SHG)成像,然后在单个diaphragm肌肉肌中进行定量形态计量学,从健康大鼠进行MV + NMBA的五天或10天的健康大鼠,以模拟ICU治疗而无需混淆病理(例如Sepsis)。大鼠每天接受泼尼松龙,VBP-15,BGP-15或无治疗。肌球蛋白-II SHG信号强度,纤维直径(FD)以及肌纤维角平行性的参数
遗传听力缺陷的遗传听力损失组非常多样化。可以将它们分为非综合征和综合征,具体取决于基因缺陷是仅引起助听器还是更广泛的症状。GJB2基因错误在几个人群中被评估为遗传听力损失(5-7)。芬兰人群中,估计GJB2基因缺陷可以解释几乎17%的非综合性听力(1)。非综合听力缺陷是听力损失的最大和百分比。现在以超过120个基因而闻名(8)。基因的很大一部分编码内耳的结构成分(例如alpha技术,tecta)或影响毛细胞内耳的功能(例如Stereo-Silo,strc)(9)。导致听力损失的GEE连接故障对许多细胞功能有影响,例如支持结构(例如肌球蛋白7a,myo7a;肌球蛋白6,myo6),细胞的细胞(例如β-2打开蛋白,GJB2),离子通道和细胞运输。遗传听力缺陷也可能与500多个综合征有关(10)。最常见的是Usher综合征,其具有视网膜变性,除了听力衰竭外,Waardenburg综合征。图1显示了先天听力损失的背景和继承模型。听力损失的类型会影响基因缺陷的概率。在儿童中,紧凑的听力缺陷是由于遗传原因引起的,原因是粘合性耳部疾病(11)。而不是波特 -通过基因缺陷鉴定出了先天性传感器听力损失的患者中约有一半的患者(12)。
易感人群发生心肌炎的机制尚不清楚,目前已描述了多种潜在机制。免疫系统可能会将疫苗中的 mRNA 检测为抗原,从而激活促炎级联和免疫途径,这些途径可能作为全身反应的一部分在心肌炎的发展中发挥作用。SARS-CoV-2 的刺突蛋白和自身抗原(包括肌球蛋白)之间可能存在分子模拟。心脏反应性自身抗体的产生可能对心脏单核细胞产生功能影响(Bozkurt B et al.,2021)。