卵母细胞在受精之前必须生长和成熟,这要归功于与周围的体细胞进行密切的对话。这种通信的一部分是通过类似纤维状的突起,称为跨分散投影(TZP),由体细胞发送到卵母细胞膜。为了研究TZP对卵母细胞质量的贡献,我们通过产生完整的TZP结构组件肌球蛋白-X(myo10)的敲除小鼠来损害它们的结构。使用旋转盘和超分辨率显微镜结合了机器学习方法的表型卵形形态,我们表明缺乏Myo10会在卵母细胞生长过程中降低TZP密度。减少TZP并不能防止卵母细胞生长,而是会损害卵母细胞的完整性。重要的是,我们通过转录组分析揭示了基因表达在TZP缺乏的卵母细胞中发生了改变,并且卵母细胞成熟和随后的早期胚胎发育受到部分影响,从而有效地降低了小鼠的生育能力。我们建议TZP在种系的结构完整性中起作用 - 体细胞复合物,这对于调节卵母细胞中的基因表达至关重要。
ASMCs 具有收缩表型标志基因[例如,α平滑肌肌动蛋白 (α-SMA)、钙调蛋白、SM22 和平滑肌肌球蛋白重链],是支气管收缩的主要效应细胞,并募集免疫细胞,这些免疫细胞主要通过增强对刺激的反应性、更大程度的收缩、增加体积和增加炎症介质(例如,Cxcl8、Cxcl10)的分泌(10)来导致哮喘气道高反应性、缩窄、重塑和炎症。因此,明确这些导致哮喘气道重塑和气道平滑肌层增厚的“ASMCs”的性质和来源尤为重要。此外,有必要开发减少 ASMCs 聚集和收缩能力以及减轻 ASMCs 炎症的抑制剂。本文总结了近年来关于“ASMCs”来源的研究,以及针对哮喘气道重塑中“ASMCs”异常增多的靶向治疗,并按照叙述性综述报告清单撰写了以下文章(可参见https://atm.amegroups. com/article/view/10.21037/atm-22-3219/rc)。
卵母细胞在受精之前必须生长和成熟,这要归功于与周围的体细胞进行密切的对话。这种通信的一部分是通过类似纤维状的突起,称为跨分散投影(TZP),由体细胞发送到卵母细胞膜。为了研究TZP对卵母细胞质量的贡献,我们通过产生完整的TZP结构组件肌球蛋白-X(myo10)的敲除小鼠来损害它们的结构。使用旋转盘和超分辨率显微镜结合了机器学习方法的表型卵形形态,我们表明缺乏Myo10会在卵母细胞生长过程中降低TZP密度。减少TZP并不能防止卵母细胞生长,而是会损害卵母细胞的完整性。重要的是,我们通过转录组分析揭示了基因表达在TZP缺乏的卵母细胞中发生了改变,并且卵母细胞成熟和随后的早期胚胎发育受到部分影响,从而有效地降低了小鼠的生育能力。我们建议TZP在种系的结构完整性中起作用 - 体细胞复合物,这对于调节卵母细胞中的基因表达至关重要。
抗病毒细胞因子干扰素(IFN)激活IFN刺激基因(ISGS)的表达以建立抗病毒态。粘菌病毒抗性2(MX2/MXB)是一种ISG,它抑制了HIV-1的核进口并与病毒式衣壳和细胞核转运机械相互作用。我们将肌球蛋白轻链磷酸酶(MLCP)亚基MyPT1和PPP1CB作为MX2的正常作用调节剂,与其N末端结构域(NTD)相互作用。我们证明了NTD在14、17和18的位置的丝氨酸磷酸化抑制了MX2抗病毒功能,可防止与HIV-1帽骨和核转运因子的相互作用,并由MLCP逆转。重要的是,NTD丝氨酸磷酸化还阻碍了MX2介导的细胞核货物进口的抑制作用。我们还发现,IFN治疗降低了这些丝氨酸处的磷酸化水平,并概述了稳态调节机制,其中通过磷酸化对MX2的抑制以及MLCP介导的去磷酸化的抑制作用,平衡MX2对MX2对正常细胞与HISATE免疫功能的有害作用平衡,与HIV-1抗HIV-1。
心脏病性休克。 4高总白细胞计数已显示与MI患者心力衰竭的发展有关。 5尽管收缩功能障碍的原因可能是多因素的,但积累的证据表明,在心肌缺血期间,氧化应激和促炎性介体的释放可能有助于其发育。 6,7,8炎症生物标志物已被确定为心肌梗死风险分层的重要工具。 9,10心力衰竭生物标志物可以在经验上被归类为神经激素介质,心肌损伤的标志和重塑,例如BNP(脑型发作肽),Pro -BNP以及诸如CRP,TLC和含量中性粒细胞计数的全身性炎症指标。 肌细胞损伤的标志物,包括肌钙蛋白,心型脂肪抗结合蛋白和肌球蛋白光链1,可能会进一步改善与血浆脑纳替肽结合的心力衰竭预后。 基质重塑和炎症的生物标志物已成为潜在的临床前指标,以辨认为患有临床心力衰竭风险的个体。 37提供对炎症状态的评估的外周白细胞计数,中性粒细胞计数可能是梗死心肌炎症反应强度的标志,与C反应性蛋白质和其他急性相抗物物相比,是一种廉价且易于使用的测试。 11,12,13心脏病性休克。4高总白细胞计数已显示与MI患者心力衰竭的发展有关。 5尽管收缩功能障碍的原因可能是多因素的,但积累的证据表明,在心肌缺血期间,氧化应激和促炎性介体的释放可能有助于其发育。 6,7,8炎症生物标志物已被确定为心肌梗死风险分层的重要工具。 9,10心力衰竭生物标志物可以在经验上被归类为神经激素介质,心肌损伤的标志和重塑,例如BNP(脑型发作肽),Pro -BNP以及诸如CRP,TLC和含量中性粒细胞计数的全身性炎症指标。 肌细胞损伤的标志物,包括肌钙蛋白,心型脂肪抗结合蛋白和肌球蛋白光链1,可能会进一步改善与血浆脑纳替肽结合的心力衰竭预后。 基质重塑和炎症的生物标志物已成为潜在的临床前指标,以辨认为患有临床心力衰竭风险的个体。 37提供对炎症状态的评估的外周白细胞计数,中性粒细胞计数可能是梗死心肌炎症反应强度的标志,与C反应性蛋白质和其他急性相抗物物相比,是一种廉价且易于使用的测试。 11,12,134高总白细胞计数已显示与MI患者心力衰竭的发展有关。5尽管收缩功能障碍的原因可能是多因素的,但积累的证据表明,在心肌缺血期间,氧化应激和促炎性介体的释放可能有助于其发育。6,7,8炎症生物标志物已被确定为心肌梗死风险分层的重要工具。9,10心力衰竭生物标志物可以在经验上被归类为神经激素介质,心肌损伤的标志和重塑,例如BNP(脑型发作肽),Pro -BNP以及诸如CRP,TLC和含量中性粒细胞计数的全身性炎症指标。肌细胞损伤的标志物,包括肌钙蛋白,心型脂肪抗结合蛋白和肌球蛋白光链1,可能会进一步改善与血浆脑纳替肽结合的心力衰竭预后。基质重塑和炎症的生物标志物已成为潜在的临床前指标,以辨认为患有临床心力衰竭风险的个体。37提供对炎症状态的评估的外周白细胞计数,中性粒细胞计数可能是梗死心肌炎症反应强度的标志,与C反应性蛋白质和其他急性相抗物物相比,是一种廉价且易于使用的测试。11,12,13
细胞骨架蛋白构成了真核细胞中不同类型结构聚合物的骨架。此类聚合物包括微丝 (MF)、微型细丝、微管 (MT) 和中间细丝 (IF)。每种聚合物的组成都相对均匀。单体细胞骨架蛋白以头对尾的方式结合,形成具有不同几何形状和生物物理特性的长链。这些单体包括肌动蛋白(形成 MF)、肌球蛋白(微型细丝)、微管蛋白 (MT) 和各种 IF 蛋白家族,包括角蛋白、结蛋白、神经胶质纤维酸性蛋白 (GFAP)、周围蛋白、波形蛋白、间蛋白、巢蛋白等(详见 [ 1 ])。MF 和微型细丝使细胞能够适应周围环境。它们在细胞分裂中发挥多种作用,并在生理和病理环境中支持细胞迁移,例如在侵袭和转移期间。微管是必不可少的,因为它们形成了介导细胞分裂过程中遗传物质均匀分离的物理支架,但它们在细胞迁移中的作用有限。IF 赋予细胞机械阻力。
干细胞通常依靠来自利基市场的信号,在许多组织中,这些信号采用了精确的形态。仍然难以捉摸的是生态位的形成方式以及形态如何影响功能。为了解决这个问题,我们利用了果蝇性促性gonadal壁基,提供遗传性障碍和现场成像。我们先前已经显示了将小众细胞迁移到性腺中适当位置的机制,以及对小众功能的结果。在这里,我们表明,一旦定位,生态位细胞可牢固地极化丝状肌动蛋白(F-肌动蛋白)和非肌肉肌球蛋白II(MyOII),向相邻的生殖细胞。沿利基外围的肌动蛋白张力产生高度可重现的平滑轮廓。没有收缩性,壁ni是错误的,并且在调节生殖线干细胞行为的能力方面表现出缺陷。我们还表明生殖细胞有助于在小众细胞中偏振肌无力,并且外在输入是生态形态发生和功能所必需的。我们的工作揭示了一种反馈机制,其中干细胞塑造了指导其行为的利基市场。关键词果蝇,干细胞,睾丸,利基,反馈,肌动蛋白收缩力,形态发生
摘要:神经营养性原肌球蛋白受体激酶 ( NTRK ) 基因 ( NTRK1 、 NTRK2 和 NTRK3 ) 编码三种跨膜高亲和力酪氨酸激酶神经生长因子受体 (TRK-A、TRK-B 和 TRK-C),主要参与神经系统发育。这些基因的功能丧失会导致神经系统发育问题;相反,激活变异具有致癌潜力,促进细胞增殖/存活和肿瘤发生。染色体重排是病理性 NTRK 激活最具临床意义的变异,可导致结构性活性嵌合受体。在许多儿童和成人癌症类型中,包括中枢神经系统 (CNS) 肿瘤,已检测到 NTRK 融合的频率极其多变。这些变异可以通过不同的实验室检测方法(例如免疫组织化学、FISH、测序)检测出来,但每种方法都有各自的优势和局限性,在诊断或研究中必须加以考虑。此外,这种分子标记的治疗靶向性最近显示出极高的疗效。考虑到脑肿瘤总体上缺乏有效的治疗方法,预计 NTRK 融合检测将很快成为中枢神经系统肿瘤诊断评估的主要方法,因此有必要深入了解这一主题。
小鼠和同变物对照(TNF +/ +)的小鼠用于研究内核和转基因T细胞受体(TCRM)模型中的心肌炎。TNF + / - 和TNF - / - 小鼠用α-肌球蛋白重链肽(αMYHC)免疫的小鼠表现出心肌炎的发病率降低,但易感动物在心脏中发生了广泛的炎症。在TCRM模型中,由于心肌病和心脏纤维化,TNF-α的产生有缺陷与死亡率增加有关。我们可以确认TNF-α以及抗原激活的心脏反应效应子CD4 + T(T EFF)细胞有效地激活心脏微血管内皮细胞(CMVEC)的粘附特性。我们的数据表明,除T EFF细胞外,内皮产生的TNF-α还促进了叶核细胞粘附于活化的CMVEC。对两种心肌炎模型的CD4 + T淋巴细胞的分析均显示出心脏,脾和TNF + / - 和TNF - / - 小鼠的血液中T EFF细胞的分数明显增加。的确,抗原激活的TNF - / - T EFF细胞显示长期生存率延长,TNF-α细胞因子诱导的心脏反应性t eff的细胞死亡。
机械微环境(例如细胞拥挤)的动态变化调节谱系命运以及细胞增殖。尽管已经对增殖接触抑制的调节机制进行了广泛的研究,但尚不清楚细胞拥挤如何引起谱系规范。在这里,我们发现众所周知的癌基因ETS变体转录因子4(ETV4)是将机械微环境和基因表达联系起来的分子传感器。在人类胚胎干细胞不断增长的上皮中,细胞拥挤动力学被转化为ETV4表达,是未来谱系命运的预案例。通过细胞拥挤的灭活开关的ETV4灭活,使人胚胎干细胞上皮细胞中神经外胚层分化的潜力。从机械上讲,细胞拥挤会使整联蛋白 - 肌球蛋白途径失活,并阻止成纤维细胞生长因子受体(FGFRS)的内吞作用。中断的FGFR内吞作用可通过ERK失活引起ETV4蛋白稳定性的明显降低。数学建模表明,人类胚胎干细胞上皮细胞密度的动力学精确地决定了时空ETV4表达模式,因此,谱系发育的时机和几何形状。我们的发现表明,干细胞上皮中的细胞拥挤动力学使用ETV4作为关键机械传感器驱动时空谱系规范。