运动蛋白(MP)是真核细胞中cy骨骼的组成部分[1-3]。它们参与了亚细胞过程中的广泛功能,例如货物的细胞内转运,细胞骨架动力学,应力产生和细胞运动。他们水解ATP以经过附着的结局,并沿着附着状态的共轭纤维进行分解运动[4-8]。例如,MPS的动力蛋白和动力蛋白沿微管移动,而MPS的肌球蛋白家族可以沿纤维肌动蛋白移动。他们的运动取决于载荷[9,10],并且他们可以达到的最大ve-受到可用的ATP浓度[11]。ATP水解对化学物质的局部耗散驱动MPS脱离平衡。他们的运动方向取决于可以行走的局部前后不对称性。在最小的尺度上生成非平衡驱动,MP构成了一类活动物质[12-14],其中时间反转对称性和平衡闪烁 - 耗散关系被损坏。在活细胞中,MP共同运输包括细胞器在内的各种货物[15-19]。从几个到数百个国会议员可以参与这种运输[20-25]。多个MP驱动的货物动力学的理论研究使用相等的负载共享近似值或有限数量的MPS的详细数值模拟[26-33]。弹性耦合MPS显示应变诱导的解开和停滞[37 - 39]。除了进行细胞内反式 -MPS之间的耦合可能是由直接的机械连接产生的,如肌球蛋白纤维[34],分子拥挤效应[35,36]或与货物的结合,尚未完全了解其可能的影响。用于弱构层,有效的解开速率和平均货物载体恢复到单运动行为的非相互作用限制。
摘要 29 成纤维细胞是心脏损伤后细胞外基质沉积的重要调节剂。30 这些细胞在纤维化过程中对 31 环境刺激表现出高度可塑性的表型反应。在这里,我们测试候选抗纤维化药物是否以及如何 32 差异地调节心脏成纤维细胞表型的测量,这可能有助于确定 33 心脏纤维化的治疗方法。我们对用 13 种临床相关药物在 TGFβ 和/或 IL-1β 背景下治疗的人类 34 心脏成纤维细胞进行了高内涵显微镜筛选,35 测量了 137 个单细胞特征的表型。我们使用来自 36 高内涵成像的表型数据来训练基于逻辑的机械机器学习模型 (LogiMML) 用于 37 成纤维细胞信号传导。该模型预测了吡非尼酮和 Src 抑制剂 WH-4-023 如何分别减少 38 肌动蛋白丝组装和肌动蛋白-肌球蛋白应力纤维形成。验证了 39 LogiMML 模型预测 PI3K 部分介导 Src 抑制的影响,我们发现 40 PI3K 抑制可降低 41 人类心脏成纤维细胞中的肌动蛋白-肌球蛋白应力纤维形成和前胶原 I 的产生。在本研究中,我们建立了一种结合 42 基于逻辑的网络模型和正则化回归模型优势的建模方法,应用此 43 方法来预测介导药物对成纤维细胞的不同影响的机制,44 揭示了通过 PI3K 起作用的 Src 抑制是治疗心脏纤维化的潜在方法。45
图3形成肌肉纤维的收缩元件的示意图。由肌动蛋白和辅助蛋白肌动蛋白和肌钙蛋白组成的细丝锚定在Z盘上,Z盘主要由棒状肌动蛋白结合蛋白α-肌动蛋白形成。肌球蛋白形成的厚细丝由结构蛋白肌瘤锚定在M系的水平。其他基本蛋白质是钛,它像分子弹簧一样连接到Z-二烟的厚细丝,在肌肉发育过程中涉及肌动蛋白组装的Nebulin和smbisturin,它通过与Sank1.5的相互作用将收缩仪与SR膜连接到SR膜。图像改编自(Gokhin&Fowler,2011年)。
概要和相关性,该模块有助于有兴趣评估和修改尿液肌红蛋白测试实践的实验室。它描述了使用快速诊断方案的使用,其中标准和可用的尿液二极管血红蛋白测试的结果可用于分类标本,以进行更具体的肌球蛋白测试,而这些测试可能在所有实验室中都不容易获得。通过使用此策略,只有使用肌红蛋白的更具体的测试对那些具有显着肌红蛋白尿的可能性很高的样品进行测试。遵守此策略可以:1。减少实验室中执行的尿液肌红蛋白测试的数量或参考实验室。2。更快有效地识别患有肌张力瘤的患者。3。提供更快速的信息,以排除临床上重要的肌红尿症。
草鱼 10.5 X 鲢鱼 8.8 尼罗罗非鱼 8.3 XX 鲤鱼 7.7 X 鳙鱼 5.8 卡特拉鱼 5.6 鲫鱼 5.1 颜色 大西洋鲑鱼 4.5 X 颜色,脂肪酸代谢 条纹鲶鱼 4.3 南亚鲮 3.7 X 虱目鱼 2.4 鱼雷鲶鱼 2.3 虹鳟鱼 1.6 X 武昌鲷 1.4 青鱼 1.3 黄鲶 0.9 X 斑点叉尾鲶 - XXX 大型泥鳅 - 颜色 牙鲆 - X 太平洋蓝鳍金枪鱼 - 游泳行为 太平洋牡蛎 - 肌球蛋白功能 赤鲷 - X 白虾 - 几丁质酶功能 南方鲶鱼 - X 虎斑河豚 - X
Mavacamten正在临床发育中,用于治疗非刺激性肥厚性心肌病(HCM)。hCM通常是一种遗传性疾病,心肌细胞增大,心脏的壁变厚。如果没有明显的血流阻断,则该条件称为非目标HCM(NHCM)。这是由心肌中肌球蛋白和肌动蛋白(肌肉收缩涉及的蛋白质)过度结合引起的,这会导致心脏中心异常增加。这会影响心脏有效地在身体周围抽血的能力,并会引起症状,包括头晕,疲劳,心脏杂音和腿部,脚踝和/或腹部的肿胀。NHCM患者有严重状况的风险,例如心脏死亡和中风。目前,NHCM的治疗策略旨在管理症状,并且没有持牌疗法可用于治疗疾病的根本原因。
摘要动物内脏器官的左右 (LR) 不对称是在胚胎发育过程中通过逐步过程建立起来的。虽然有些步骤是保留的,但动物之间采用不同的策略来启动身体对称性的破坏。在斑马鱼 (硬骨鱼类)、非洲爪蟾 (两栖动物) 和小鼠 (哺乳动物) 中,对称性破坏是由 LR 组织器处的定向流体流动引起的,这种流体流动由运动纤毛产生并被机械反应细胞感知。相比之下,鸟类和爬行动物不依赖纤毛驱动的流体流动。无脊椎动物(如蜗牛和果蝇)采用另一种不同的机制,其中对称性破坏过程由肌球蛋白和肌动蛋白分子相互作用下游获得的细胞手性支撑。在这里,我们强调了肌动球蛋白相互作用和平面细胞极性是动物之间多种 LR 对称性破坏机制的汇聚切入点。
接受原肌球蛋白受体激酶抑制剂 (TRKi) 靶向疗法以外的标准治疗的神经营养性原肌球蛋白受体激酶融合阳性 (NTRK +) 实体瘤患者的临床特征和结果尚未得到充分记录。在这里,我们使用来自美国电子健康记录衍生的临床基因组学数据库的信息描述了临床实践中接受治疗的 NTRK + 肿瘤患者的临床特征。我们还比较了 NTRK + 患者和匹配的 NTRK 融合阴性 (NTRK -) 患者的生存结果,并研究了 NTRK 融合的临床预后价值。NTRK 阳性定义为存在涉及 NTRK1/2/3 的融合或重排,使用 NGS(Foundation Medicine, Inc.)确定。 NTRK + 患者(n = 28)在 2011 年 1 月 1 日至 2019 年 12 月 31 日期间被诊断患有局部晚期/转移性实体瘤,并且在就诊期间未接受过任何 TRKis(例如,恩曲替尼或拉罗替尼)。未经选择的 NTRK - 人群包括 24,903 名患者,而匹配的 NTRK - 队列包括 280 名患者。与未经选择的 NTRK - 患者相比,NTRK + 患者往往更年轻,通常不吸烟,并且从晚期诊断到首次 NGS 报告的时间更短;然而,这些差异并不显著。NTRK + 队列从晚期/转移性诊断开始的中位总生存期 (OS) 为 10.2 个月(95% CI,7.2–14.1),而匹配的 NTRK - 队列为 10.4 个月(95% CI,6.7–14.3); NTRK + 患者与匹配的 NTRK - 患者的死亡风险比为 1.6(95% CI,1.0–2.5;P = 0.05)。NTRK + 队列中基因组共同变异很少见(28 名患者中只有两名患者有共同变异)。总体而言,虽然风险比表明 NTRK 融合可能是生存的负面预后因素,但没有显著迹象表明
本次会议将是在阿斯彭物理中心(ACP)举行的有关单分子生物物理学(SMB)的第12个双年展研讨会,该研讨会是在2001年成功的系列上建立的。SMB会议重点介绍了单分子生物物理学领域的最新进展,包括其实验和理论前沿。主题每年有所不同。过去的会议中涵盖的生物系统包括基于核酸的酶(聚合酶,拓扑异构酶,解旋酶等。),核酸(DNA,RNA),机械酶(肌球蛋白,动力蛋白,动力蛋白,ATP合酶,鞭毛运动)以及分子生理学(折叠/展开,结合,信号传导和其他生物结构变化)的方面。精选的实验技术包括高级荧光,光学镊子,磁性镊子,扫描的探针技术,纳米孔,冷冻电子显微镜和超分辨率技术。这个研讨会传统上吸引了实验者,计算科学家和理论家的混合。
肥厚性心肌病(HCM)是由肉瘤蛋白变异引起的心脏遗传疾病,破坏了心肌功能,导致超收缩,肥大和脂质。最佳心脏功能依赖于控制薄和厚的纤维蛋白的精确配位,这些蛋白质控制了时间,细胞力的产生和放松的幅度,以及体内收缩和舒张功能。肉瘤蛋白,例如心脏肌球蛋白结合蛋白C(CMYBP-C)通过调节肌动蛋白相互作用,在心肌收缩功能中起着至关重要的作用。CMYBP-C中的遗传变异是HCM的常见原因,强调了其在心脏健康中的重要性。本综述探讨了HCM和HCM转化研究的迅速前进的分子机制,包括针对肌节功能的基因疗法和针对小分子的干预措施。我们将重点介绍新的方法,包括使用重组AAV载体和针对肌节功能的小分子药物的基因治疗。