cfh f gctgtatgcactgaatctgga 136 r actgggtacgtgtgatttcatctccccccccccccccccccccccccccccccccccccccccccccccccc 123 r acgtttttttttcgctgcctgagtc cd44 f acacgagaagaagaagagagagcaggac 135 ttatctgcagtggatcgagttc 150 r gtagcttttcctttcctatgccaaacc oct4 f gagaatttgtgttgtcctggagtgc150 r tcgttgtgtgtgcatagtgctgtcgctgtcgcgtcggctg sox2 TTCGGGTAGTGGAAAACCAG 108 R AGTAGAAATACGGCTGCACC Klf4 F ACCTACACAAAGAGTTCCCATC 136 R TGTGTTTACGGTAGTGCCTG EpCAM F CAGACAAGGACACTGAAATAACC 134 R TGTGATCTCCTTCTGAAGTGC ALDH1A3 F cttctgccttagagtctggaac 138 r tcacttctgtgtgtattcggcc abcg2 f aggtctgtgtgtggtggtcaatctcac 142 r tcctgttgcattgagtcctg nanog nanog nanog f gaaatacctcctcctcagcctcctcctccctccagc149 ggatcgggttaagggaaagag 139 r aggagacataggcgagaggggggggggggg epas1 f cccatgtctccaccttcaag 136 r aaggcttgcttcttcattccttcatctcccccccccccccccccccacacaagcaagactc146 r gggggggggtccgtccccccctccctcctcccctcct4 105 r tcttcacggaaacagggttc ptprj f caagcaggctcaggactatg 142 r ggaggtgaAatggaAtggaActgtct myo6 f acgtgctccaaagtctgtgttac12 atccatgagcttttttccccagβ-肌动蛋白f cccagcacaatgaagatcaag 136 r gactcgtcatcatactcctgcttg abcg2,atp biding cassette cassette subfimily g ement g ement 2; Aldh1a3,醛脱氢酶1家族成员A3; CFH,补体因子H; CXCR4,C-X-C基序趋化因子受体4; EPAS1,内皮PAS结构域蛋白1; Epcam,上皮细胞粘附分子; EPB41L3,红细胞膜蛋白带4.1样3; GJA1,间隙连接蛋白α1; KLF4,KLF转录因子4; Myo6,肌球蛋白VI; PTPRJ,蛋白酪氨酸磷酸酶受体类型J
摘要 随着时间的推移,癌症病例数量预计会大幅增加,研究人员目前正在探索“非传统”研究领域,以寻求新颖的治疗方法。一个逐渐引起人们兴趣的新兴领域是细胞机械机制。从广泛的角度来看癌症的物理特性,人们一直在争论是否可以将不同类型的癌症定义为更硬或更软。尽管有大量文章支持双方的观点,但证据表明癌症并没有特别的规律性。相反,癌症具有高度适应性,使其能够承受癌细胞遇到的不断变化的微环境,例如肿瘤压缩以及血管系统和身体中的剪切力。使癌细胞实现这种适应性的是构成机械网络的特定蛋白质,从而导致癌细胞的特定机械程序。巧合的是,这些蛋白质中的一些,如肌球蛋白 II、α-辅肌动蛋白、肌动蛋白和肌动蛋白,在癌症中的表达发生了改变和/或以某种方式直接参与癌症进展。因此,以机械系统为目标作为一种治疗策略可能会在未来带来更有效的治疗方法。然而,针对机械程序绝非易事。机械程序不仅参与癌症的发展和转移,还有助于驱动许多其他关键的细胞过程,如细胞分裂、细胞粘附、代谢和运动。因此,针对机械程序的抗癌治疗必须非常小心,以避免潜在的副作用。在这里,我们介绍了针对机械程序的潜力,同时也提供了它作为癌症治疗策略的挑战和缺点。
小胶质细胞的极化促进了顺铂诱导的耳毒性的发展,而源自TNF-α预处理的间充质干细胞(MSC)的外泌体(EXO)可能诱导巨噬细胞的极化。将小鼠腹膜内注入顺铂,以建立耳毒性模型。骨髓MSC(BMSC)用TNF-α预处理48小时,并富集相关的TNF-EXO或EXO,这些TNF-EXO或EXO富含在耳毒小鼠的左耳中进一步跨斜向施用。听觉敏感性得到了揭示。用肌球蛋白7a染色检测到毛细胞的数量。在顺铂暴露的小鼠中揭示了受损的听觉敏感性和上调的毛细胞损失,可以通过EXO或TNF-EXO治疗来逆转。在接触顺铂暴露的耳蜗中检测到机械上调的IBA1,CD86,INOS,CD206和ARG1。TNF-EXO或EXO给药进一步降低了IBA1,CD86和INOS表达,并增加了CD206和ARG1表达。TNF-EXO或EXO给药抑制了促炎性细胞因子(IL-1β和IL-6)的产物,同时增强了顺铂暴露的COHLEA中抗炎细胞因子IL-10产生。重要的是,与EXO相比,TNF-EXO给药显示出更深刻的好处。TNF-α预处理可能是增强BMSC衍生外泌体对顺铂诱导的耳毒性的能力的一种新的治疗选择。
摘要。– 目的:胰腺癌 (PaCa) 是一种极难治疗且死亡率很高的疾病。大多数患者到医院就诊时已是转移性或晚期癌症,因此无法彻底治愈。晚期胰腺癌没有特定的治疗方法,但手术、放疗和化疗可以帮助患者延长生命。因此,将有关这种癌症的潜在靶向疗法的所有信息汇总到一份报告中至关重要。材料和方法:本综述使用相关关键词和全面的网络搜索编写而成,搜索了 PubMed、ScienceDirect、GoogleScholar、Scopus、MEDLINE 和 SpringerLink。结果:针对各种生物过程的传统药物对正常细胞有显著的负面影响。因此,需要靶向治疗,包括使用小分子抑制剂和单克隆抗体来靶向癌细胞表面受体、生长因子和其他参与疾病进展的蛋白质。在本综述中,我们总结了已知的靶向 PaCa 疗法,包括 KRAS、mTOR 和 PI3K/AKT 信号通路抑制剂,以及 PARP、hedgehog、EGFR/ErbB 和 TGF-β 信号通路抑制剂,以及神经营养性原肌球蛋白受体激酶 (NTRK) 抑制剂。结论:充分了解 PaCa 发病机制并采用个性化药物可以提高患者的总体生存率。我们相信靶向治疗可以帮助 PaCa 患者获得更好的预后。因此,需要进行更多研究来找到合适的生物标志物来帮助早期肿瘤诊断,并根据本文列出的药物发现新的潜在治疗方法。
免疫性胆管破坏是肝移植和造血干细胞移植后胆管消失综合征 (VBDS) 的一种致病性疾病。由于胆汁酸受体鞘氨醇 1-磷酸受体 2 (S1PR2) 在将骨髓来源的单核细胞/巨噬细胞募集到胆汁淤积性肝损伤部位方面起着关键作用,因此使用培养的巨噬细胞和患者组织检查了 S1PR2 的表达。胆小管破坏先于肝内胆管减少;因此,我们使用形成明显胆小管状网络的三维肝细胞培养模型,重点研究肝细胞 S1PR2 和下游 RhoA/Rho 激酶 1 (ROCK1) 信号通路和胆小管改变。多重免疫组织化学显示,与正常肝脏相比,由于移植物抗宿主病和肝移植后排斥反应导致胆管减少的肝组织中 S1PR2 + CD45 + CD68 + FCN1 + 炎性巨噬细胞和 S1PR2 + CD45 + CD68 + MARCO + 库普弗细胞的数量增加。抑制 S1PR2 后,巨噬细胞表达的促炎细胞因子(包括 MCP1)减少。牛磺胆酸和 S1P2 激动剂诱导肝细胞 S1PR2 并降低 RhoA/ROCK1 表达,导致胆小管扩张。抑制 S1PR2 可逆转对 RhoA/ROCK1 表达的影响,从而通过肌球蛋白轻链 2 (MLC2) 磷酸化维持胆小管。巨噬细胞上的 S1PR2 和肝细胞上的 S1PR2 的激活可能会通过 MLC2 磷酸化破坏受 RhoA/ROCK1 调控的 VBDS 中的胆汁小管动力学。
817现实世界中患有阻塞性HCM患者的肌球蛋白ATPase Inhbitor:来自意大利多中心注册表的数据Cesare de Gregorio,Paolo Bellocchi,Anna Rosa Napoli,Anna Rosa Napoli,Beatrice Musumeci,Beatrice Musumeci,Aniello Sammartino,Aniello Sammartino,Giancarlo tini,Giancarlo tini,chiancarlo todiiny,vlrady chrone throne,vlry eae eyee,以及 Lia Crotti (A, B), Valeria Rella (A), Denisa Muraru (A, B), Elena Biagini, Maria Alessandra Schiavo, Claudio Bergami, Francesco Negri, Federico Angriman, Giuseppe Limongelli, Emanuele Monda, Federica Verrillo, Fabio Vagnarelli, Carla Lofiego, Paolo Tofoni,Daniela Tomasoni,Maria Giulia Bellicini,Enrica Perugini,Giacomo,Giacomo。 DATTHTH, Maurizio Sguazzotti, Barbara Mabritto, Giuseppe Musumeci, Francesca Fumero, Ines Paola Monte, Denise Cristiana Faro, Claudia Raineri, Daniele Melis, Chiara Calore, Marika Martini, Federica Re, Lorenzo-Lupo Dei, Marco Merlo, Anna Reginato, Cinzia Forleo, Andrea Igoren Guaricci, Massimo Mapelli, Gianluca Di Bella, Diego La Maestra, the Maestra, Mariapaola, Campisi, Giuseppe Patti, Simona De Vecchi, Piergiuseppe Agostoni, Camillo author, Marco Metra, Iacopo Olivotto, Gianfranco Sinagra, Marco Canepa, Massimo imazio
方法,我们通过从心脏肌球蛋白重链中挑战性嗜酸性小鼠挑战性嗜酸性小鼠,开发了与性粒细胞增生相关的心脏病模型。通过组织学,免疫组织化学,流式细胞仪以及外周血中细胞和生物标志物测量的疾病结局。通过使用嗜酸性粒细胞缺陷型小鼠(d dblgata)确定嗜酸性粒细胞依赖性。从心脏的单细胞进行单细胞RNA测序,以评估细胞组成,亚型和表达谱。结果小鼠受到心肌和对照肽的挑战的小鼠患有外周血清细胞增多症,但只有那些受到心肌肽挑战的人患有心脏炎症。心脏组织通过与心肌细胞损伤相关的富含嗜酸性粒细胞的炎症性浸润。疾病的外观和严重程度取决于嗜酸性粒细胞的存在。单细胞RNA测序显示髓样细胞,T细胞和粒细胞(中性粒细胞和嗜酸性小鼠)的富集。巨噬细胞偏斜,嗜酸性粒细胞具有活化的表型。基因富集分析确定了可能参与疾病病理生理学的几种途径。结论嗜酸性粒细胞是与嗜酸性粒细胞增生相关心脏病的心脏损伤所必需的。此外,髓样细胞,粒细胞和T细胞合作或独立地参与了与嗜性粒细胞增生的心脏病的发病机理。
缩写:AAV:腺相关病毒;ABCA1:ATP 结合盒转运蛋白 A1;ACE2:血管紧张素转换酶 2;ANXA1:膜联蛋白 A1;Bcl-2:B 细胞白血病/淋巴瘤 2;Bcl-xL:超大 B 细胞淋巴瘤;BDNF:脑源性神经营养因子;Brn3b:脑特异性同源框/POU 结构域蛋白 3b;C3:C3 胞外酶转移酶;CNV:脉络膜新生血管;CS:皮质类固醇;EAU:实验性自身免疫性葡萄膜炎;ECM:细胞外基质;EIU:内毒素诱导的葡萄膜炎;HLA:人类白细胞抗原;hSyn:人类突触蛋白 1 启动子;IL-1 β:白细胞介素 1 β;IOP:眼压; IRBP:光感受器间类视黄酸结合蛋白;MAC:膜攻击复合物;MAX:MYC 相关蛋白 X;MCP-1:单核细胞趋化蛋白-1;MMP:基质金属蛋白酶;Nabs:中和抗体;NF- κ B:核因子 κ B;NHP:非人类灵长类动物;NIU:非传染性葡萄膜炎;Nrf2:核因子红细胞2相关因子2;Pgk:磷酸甘油激酶;RGC:视网膜神经节细胞;RPE:视网膜色素上皮;scAAV:自互补 AAV;sCD59:可溶性 CD59;SOD2:超氧化物歧化酶 2;Tg-MYOC Y437H:具有肌动蛋白 Y437H 突变的转基因小鼠;TLR:Toll 样受体;TM:小梁网; TrkB:原肌球蛋白相关受体激酶-B;VEGF:血管内皮生长因子
摘要:蛋白质动力学和功能与发生的能量流有很强的联系。肌红蛋白(MB)及其突变是研究分子水平上振动能传递(VET)过程的理想系统。使用色氨酸(TRP)探针在不同的MB位置引入的抗stokes紫外线共振拉曼研究通过氨基酸替代提出,这表明兽医的量取决于相对于血红素组的TRP探针的位置。受到这项实验工作的启发,我们探索了非共价π相互作用的强度,以及最初由局部振动模式分析(LMA)与铁在Aquotem-MB中结合的轴向和远端配体的共价相互作用,最初是由Konkoli和Cremer开发的。研究了两组非共价相互作用:(1)水配体和TRP环之间的相互作用,以及(2)TRP与血红素基团的卟啉环之间的相互作用。我们通过特殊的局部模式力常数评估了这些非共价相互作用的强度。使用气相和QM/MM计算,研究了基态下的各种TRP模型的水结合的水结合的MB蛋白(总共6个)。我们的结果揭示了兽医确实取决于TRP探针相对于血红素组的位置,也取决于远端组氨酸的互变异群的性质。他们提供了有关如何评估利用LMA的蛋白质中非共价π相互作用以及如何使用这些数据探索兽医的新准则,更通常是蛋白质动力学和功能。1 - 3■引言肌球蛋白(MB)是球蛋白超级家族的杰出成员,在心脏和骨骼肌的众多生理功能中具有重要作用,对于脊椎动物,它负责氧气的储存。
描述:心力衰竭是欧洲社会常见的死亡原因,通常是扩张型心肌病 (DCM) 引起的,而扩张型心肌病可能是由心肌细胞基因突变引起的。虽然没有特定的治疗方法,但新的治疗选择是未满足的主要临床需求。作为一种有吸引力的新关键方法,Cor-Edit-P 将使用基于 Crispr-Cas9 的基因编辑对遗传性心肌病进行独特的基因治疗,使用猪作为独特的临床相关大型动物模型系统。高度心脏嗜性的腺相关病毒 (AAV) 载体将在猪体内使用,应用精确、可靠和多功能的 Cas9 技术。通过开创这种方法,我们能够恢复患有杜氏肌营养不良症的猪的肌肉和心脏中显著的肌营养不良蛋白表达。利用独特和尖端的技术,Cor-edit-P 旨在专门消除遗传性 DCM 的根本原因,以改善心脏功能,降低致命心律失常的风险,并延长寿命和提高生活质量。 Cor-edit-P 将 - 生成目前缺乏的猪遗传性心肌病模型,使用 AAV-Cas9 诱导肌节基因突变,例如肌联蛋白 (TTN) 和 β-肌球蛋白重链 (MYH7); - 在猪体内进行治疗性 Crispr-Cas9 介导的 DCM 基因编辑,以受磷蛋白 (PLN) 基因中的 PLNR14del 突变为突出例子; - 使用人类患者来源的 PLN-R14del 心室祖细胞进行体外基因校正,然后将校正后的细胞移植到 PLN-R14del 猪体内。