靶向药物治疗是治疗晚期HCC患者的重要方法,可有效改善HCC患者的预后。既往研究报道,索拉非尼和仑伐替尼作为HCC的一线靶向药物,中位总生存期(OS)分别可达13.6个月(95% CI:12.1–14.9)和12.3个月(95% CI:10.4–13.9)(4)。瑞戈非尼是HCC的二线靶向药物。作为多靶点激酶抑制剂,瑞戈非尼可全面抑制血管生成靶点,如血管内皮生长因子受体(VEGFR)1-3、血小板衍生的生长因子受体(PDGFR)、成纤维细胞生长因子受体(FGFR)、Tie-2等发挥抗血管生成作用,全面抑制血管生成(5)。接受一线靶向药物治疗后,接受瑞戈非尼治疗可显著改善HCC患者的预后。先前有研究报告,一线靶向药物治疗后瑞戈非尼的OS可达16.4个月,显著优于未接受二线治疗的7.5个月(6)。作为HCC的二线靶向药物,瑞戈非尼的中位OS为10.6个月(95%CI:9.1–12.1)(7),已被推荐作为系统治疗后病情进展的首选药物(8)。但目前尚无研究报道不同一线靶向药物治疗失败后使用瑞戈非尼。我们知道靶向药物主要通过靶点起作用,而索拉非尼和仑伐替尼作为一线靶向药物,作用于不同的靶点。是否在HCC治疗后序贯使用瑞戈非尼
背景:索拉非尼可有效治疗肝癌,但大多数患者会产生耐药性。STAT3 信号传导与索拉非尼耐药性有关。青蒿琥酯 (ART) 和 20(R)-人参皂苷 Rg3 (Rg3) 具有抗肝癌作用,可抑制癌细胞中的 STAT3 信号传导。本研究旨在评估 Rg3 与 ART 联合使用 (Rg3-plus-ART) 在克服索拉非尼耐药性方面的作用,并研究 STAT3 信号传导在这些作用中的作用。方法:使用索拉非尼耐药的 HepG2 细胞 (HepG2-SR) 评估 Rg3-plus-ART 的体外抗肝癌作用。使用患有 HepG2-SR 肝癌的 BALB/c-nu/nu 小鼠模型评估 Rg3-plus-ART 的体内抗肝癌作用。 CCK-8 测定和 Annexin V-FITC/PI 双染分别用于检测细胞增殖和凋亡。使用免疫印迹法检测蛋白质水平。通过测量 DCF-DA 荧光检测 ROS 生成。结果:Rg3-plus-ART 协同降低 HepG2-SR 细胞活力并诱发其凋亡,并抑制小鼠 HepG2-SR 肿瘤生长。机制研究表明,Rg3-plus-ART 抑制 HepG2-SR 培养物和肿瘤中 Src 和 STAT3 的活化/磷酸化。该组合还降低了 STAT3 核水平并诱导 HepG2-SR 培养物中的 ROS 产生。此外,过度激活 STAT3 或去除 ROS 会降低 Rg3-plus-ART 的抗增殖作用,而去除 ROS 会降低 Rg3-plus-ART 对 HepG2-SR 细胞中 STAT3 活化的抑制作用。结论:Rg3-plus-ART 在实验模型中克服了索拉非尼耐药性,抑制 Src/STAT3 信号和调节 ROS/STAT3 信号是其潜在机制之一。本研究为将 Rg3-plus-ART 开发为治疗索拉非尼耐药性肝癌的新方法提供了药理学基础。© 2021 韩国人参协会。由 Elsevier BV 提供出版服务 这是一篇根据 CC BY-NC-ND 许可 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 发表的开放获取文章。
简单总结:肝细胞癌 (HCC) 是全球第四大癌症相关死亡原因。尽管消融、切除和原位肝移植适用于疾病早期阶段,但索拉非尼 (Sfb) 是目前最常用的晚期 HCC 一线治疗药物,尽管由于出现耐药性,其治疗效果有限。深入了解 Sfb 治疗的分子后果对于优化新的治疗策略以改善晚期 HCC 患者的预后至关重要。在本研究中,我们分析了两种特征明确的肝癌细胞系在 Sfb 治疗后的差异基因表达变化,表明两种细胞系对治疗的反应相似。我们的研究结果提供了有关 Sfb 对各种细胞基本过程(例如 DNA 修复、翻译和蛋白质稳态)的分子作用的宝贵信息,并确定了可以为 Sfb 提供不同治疗视角的合理化问题。
摘要:随着脂肪肝、糖尿病、酒精性肝硬化等危险因素的增多,全球范围内肝癌死亡率逐渐上升。肝癌的诊断方法包括超声(US)、计算机断层扫描(CT)、磁共振成像(MRI)等。肝癌的治疗包括手术切除、移植、消融和化疗栓塞,但由于肝癌发展隐匿、手术切除后复发率高、移植失败率高,治疗仍面临多重挑战。脂质体的出现为肝癌的治疗提供了新的思路。脂质体由于其优异的载体特性和可操作性,可用于辅助影像诊断、组合治疗、疾病诊疗一体化等多种功能。本文进一步讨论了这些优势。关键词:肝靶向、纳米治疗、纳米载体、多模态成像、纳米医学、诊疗一体化
然而 Fe3O4 磁性纳米粒子易发生团聚,且由于保存不当容易被氧化,大大降低了其超顺磁性,在很大程度上限制了其在生物医学领域的应用。近年来,研究人员报道了许多对 Fe3O4 MNPs 进行表面改性的方法,如聚乙烯亚胺18、聚乙二醇 (PEG)19 和壳聚糖20,不仅提高了 Fe3O4 磁性纳米粒子的分散性和稳定性,而且增强了其生物相容性和可降解性,赋予 Fe3O4 磁性纳米粒子新的性能和功能。作为有效的药物载体,由于 Fe3O4 MNPs 具有非常小的纳米尺寸,可以通过增强渗透和保留效应 (EPR) 被动靶向肿瘤细胞。21,22
肝癌是全球第二大致命恶性肿瘤。细胞系和小鼠模型是模拟人类肝癌发生的最常用工具。最近,具有源自原发组织或细胞的三维结构的类器官已应用于肝癌研究。类器官可由诱导性多能干细胞、胚胎或成体、健康或患病组织产生。特别是,肝脏类器官已广泛用于旨在描述导致肝癌发生的分子途径的机制研究。将成簇的规则间隔回文重复序列 (CRISPR) 相关蛋白 9 (Cas9) 和微工程微型类器官技术引入用于癌症研究的肝脏类器官大大加速了这些研究。利用肝脏肿瘤类器官进行抗癌药物筛选、生物银行、组学分析和生物标志物发现,已经取得了转化进展。本综述总结了使用类器官模型研究肝癌的最新进展和剩余挑战。
转染后 48 小时收获细胞。胰蛋白酶消化后,进行 FITC-膜联蛋白 V 和碘化丙啶 (PI) 染色。使用流式细胞术用膜联蛋白 V-FITC 和 PI 的死细胞凋亡试剂盒 (Invitrogen,目录号:V13242) 分离凋亡细胞 (早期)。单克隆抗体使用与绿色荧光 FITC 染料结合的重组膜联蛋白 V 检测凋亡细胞中磷脂酰丝氨酸的外化,使用 PI 检测死细胞,其中 PI 将坏死细胞染成红色荧光。用两种探针处理后,凋亡细胞显示绿色荧光,死细胞显示红色和绿色荧光,活细胞几乎不显示荧光。Navios
组分别为(0.25±0.12)G和(517.14±112.63)mm 3(图9 B,C)。自由疼痛的肿瘤抑制作用为7.81%,肿瘤生长抑制效率低下。然而,TF-PL/ACHE的肿瘤重量抑制率为77.47%,而GL/ACHE组的肿瘤抑制率仅为48.21%,TF- PL/ACHE有效抑制了肝癌细胞的生长并减轻了肿瘤的体重。这些结果支持体内TF-PL/ACHE治疗的上抗肿瘤功效。如图9 d所示,HE染色结果表明,在TF-PL/ACHE组肿瘤组织中,GL/ACHE和TF-PL/ACHE组中的肿瘤显示出温和的染色和大面积空白,显示了较大的坏死面积,因此肿瘤组织坏死非常严重。对照组的肿瘤组织和自由疼痛组较暗,显示出可识别的组织。总的来说,TF-PL/ACHE可以有效抑制肿瘤的生长。总的来说,TF-PL/ACHE可以有效抑制肿瘤的生长。
药物筛查[10]。我们使用3D打印技术在微米尺度上打印带有精细结构的树脂模具,然后我们使用印刷模具来塑造普通96孔板的细胞培养物中的琼脂糖底物,以获得特殊的结构,例如微孔和液体交换平台。最后,使改良的96孔板实现