摘要:本文报告了应用卢瑟福背散射光谱 (RBS) 研究硅中植入的铁和钴原子的分布曲线随辐射剂量和退火温度变化的结果。研究了热退火对铁、钴,特别是氧的分布的影响。作者强烈建议,在某些热处理条件下,通过施加特定的辐射剂量,所谓的外延硅化物将在单晶表面形成,这些硅化物可以起到导电层或金属层的作用。可以考虑使用 RBS 方法来分析掺杂剂的拓扑分布和杂质的相互作用。关键词:杂质、分布、影响、热退火、植入原子、薄层、深度、辐射剂量、结构、薄膜 ________________________________________________________________________________________ 1. 简介
摘要 12 家实验室开展了一项跨实验室练习,使用电子背散射衍射 (EBSD) 测量钛金属样品的平均晶粒尺寸,该样品的平均晶粒尺寸约为 30 µm。参与者被要求遵循拟议的国际标准草案 ISO DIS13067“微束分析 - 电子背散射衍射 - 晶粒尺寸和分布测量”。在提交的初始结果中,12 家实验室中有 4 家报告的等效圆直径值与总体平均值有显著差异。在三种情况下找出了这些差异的原因,对两种情况进行了修正,然后对数据进行了全面的统计处理,以消除剩余的异常值。通过测量等效圆直径计算出的平均晶粒尺寸比使用线性截距测量法计算出的值大约大 10%。结果显示,实验室之间的平均值差异(再现性)比单个实验室进行的几次测量之间的差异(重复性)大得多。等效圆直径测量的可重复性极限比线性截距测量的可重复性极限高出约 80%,这可能是因为校准漂移和垂直于倾斜轴的倾斜校正产生的额外误差仅对前一种方法有影响。讨论了结果差异的来源,并得出结论:选择要包括在平均值计算中的最小晶粒尺寸对报告值的影响最大。选择相对较大的截止尺寸可能会产生最佳一致性,因为最小晶粒可能会产生显著的影响(与其占据的面积不成比例),并且晶粒的数量和大小最有可能随着所选的步长、数据质量和/或索引不良点的处理而变化。
SEM 使用仪器内的探测器收集数据。这些探测器可以安装在样品室内、电子发射环处或电子透镜旁边。不同仪器的探测器类型各不相同。每种类型的探测器可以具有不同的理想条件(高或低真空、高或低 keV、快或慢扫描速度)并可以接收不同的信号类型。一些探测器专门用于二次电子 (SE) 信号,而另一些则专注于收集背散射电子 (BSE)。为了更好地了解可用的探测器,我们在第 3 页创建了一个方便的参考图表。了解可用的探测器以及探测器的选择和仪器设置如何影响数据有助于改进测量并创建完整的样品图像。
第三部分 其他资料(更多详情可于教学计划中另行提供) 1. 关键词大纲(列出本课程的主要主题。) ● 材料特性 ● 分析技术概览 ● 显微镜 ● 光谱学 ● 光学显微镜 ● 电子显微镜:扫描和透射 ● 扫描探针显微镜 ● 电子探针微分析 ● X 射线衍射 ● 离子束技术 ● 二次离子质谱法 ● 卢瑟福背散射光谱法 ● 霍尔效应 ● 电容-电压测量 ● 塞贝克效应 ● 分光光度法 ● 光谱椭圆偏振法 ● 调制光谱法 ● 光致发光 ● X 射线光电子能谱法 2. 阅读清单 2.1 必读内容(必读内容可以包括书籍、书籍章节或期刊/杂志文章。城大图书馆还提供电子书、电子期刊。)
本报告确定并描述了可用于检查商用运输和通勤飞机结构损坏的新兴无损检测 (NDI) 方法。九类新兴 NDI 技术包括声发射、X 射线计算机断层扫描、背散射辐射、逆向几何 X 射线、先进电磁学(包括磁光成像和先进涡流技术)、相干光学、先进超声波、先进视觉和红外热成像。描述了每种方法的物理原理、一般性能特征和典型应用。此外,还讨论了飞机检查应用以及相关的技术考虑因素。最后,介绍了每种技术的现状,并讨论了它们何时可用于实际飞机维护计划。值得注意的是,这是 DOT/FAA/CT-91/5“老化飞机的当前无损检测方法”的配套文件。
摘要:激光冲击强化 (LSP) 已被用于通过激光金属沉积 (LMD) 来改善已修复的航空发动机部件的机械性能。本研究考察了横截面残余应力、微观结构和高周疲劳性能。结果表明,在激光熔化沉积区 200 µ m 深度处形成了 240 MPa 的压缩残余应力层,显微硬度提高了 13.1%。电子背散射衍射 (EBSD) 和透射电子显微镜 (TEM) 分析的结果表明,LSP 后取向差增加,位错特征明显,有利于提高疲劳性能。高周疲劳数据显示,与原 LMD 样品相比,LMD+LSP 样品的疲劳性能提高了 61%。因此,在航空航天领域,LSP 和 LMD 是修复高价值部件非常有效且很有前途的技术。
电子诱导的电子发射通常用二次电子产额 (SEY) 来量化,有时也称为总电子产额 (TEY)。低 SEY 材料或表面旨在减少航天器和卫星的表面充电 [1,2] 以及减轻粒子加速器中电子云的形成。[3–7] 几十年来,为了满足不断发展的技术需求,人们在元素材料表面和化合物中 [7–17] 深入研究了二次电子产额的一次电子能量依赖性以及发射电子的动能分布。对于许多应用,低于 1 的 SEY 最大值足以避免撞击电子的级联倍增。然而,对于其他解决方案而言,进一步降低 SEY 可能会有所帮助,以抑制可能产生背景噪声或使测量信号恶化的反射、背散射和二次电子,例如在电子收集器中,用于测量超高真空 (UHV) 中的低电子电流或用于基于电离的压力计。[18,19]
简介 从根本上说,扫描电子显微镜 (SEM) 图像的质量取决于所检测到的电子的质量。尽管传统的 SEM 设计采用 Everhardt-Thornley 探测器 (ETD) 来探测二次电子 (SE),采用镜头下探测器来探测背散射电子 (BSE),但先进的 SEM 可以配备多个镜头内探测器。由于这些探测器可以收集 SE 和 BSE 信号,因此可以根据观察到的电子的能量和/或发射角度对其进行分类。本文介绍了 Thermo Scientific™ Apreo SEM(带 NICol 镜筒)和 Scios™ DualBeam 中的 Thermo Scientific™ Trinity™ 检测系统。它由三个探测器组成:两个镜头内探测器(T1、T2)和一个镜筒内探测器(T3)。这种独特的系统提供了无与伦比的 SE 和 BSE 对比度以及有关样品成分、形态、表面特征等的详细信息。
摘要:本文研究了利用我们最近开发的激光箔打印 (LFP) 增材制造方法制造致密铝 (Al-1100) 部件 (相对密度 > 99.3%)。这是通过使用 7.0 MW/cm 2 的激光能量密度来稳定熔池形成并以 300 µ m 厚度的箔片产生足够的穿透深度来实现的。LFP 制造的样品中的最高屈服强度 (YS) 和极限拉伸强度 (UTS) 沿激光扫描方向分别达到 111±8 MPa 和 128±3 MPa。与退火的 Al-1100 样品相比,这些样品表现出更高的拉伸强度但更低的延展性。断口分析显示拉伸试验样品中存在拉长的气孔。利用电子背散射衍射 (EBSD) 技术观察到 LFP 制备样品中沿凝固方向的强烈晶体织构和密集的亚晶界。
本研究研究了后处理热处理对通过两种不同的增材制造技术(即激光束粉末床熔合 (LB-PBF) 和激光粉末定向能量沉积 (LP-DED))制备的 Hastelloy-X 高温合金的微观结构和力学性能的影响。使用扫描电子显微镜 (SEM) 和电子背散射衍射 (EBSD) 分析检查微观结构,同时使用洛氏 B 法通过宏观硬度测试评估力学性能。在经过几次热处理后彻底研究了合金的微观结构,这些热处理包括应力消除(在 1066°C 下持续 1.5 小时)、热等静压(在 103 MPa 压力下在 1163°C 下持续 3 小时)和/或固溶处理(在 1177°C 下持续 3 小时)。结果表明,对于 LB-PBF 和 LP-DED Hastelloy-X,后处理热处理可产生均匀的晶粒结构以及碳化物的部分溶解,尽管它们的晶粒尺寸不同。关键词:增材制造、Hastelloy-X、微观结构、晶粒尺寸、宏观硬度。