我们研究了在近乎正常的 40 keV Ar + 溅射和同时进行的 Fe 斜向共沉积下硅表面的纳米图案化。离子束入射角保持在 15°,在没有金属掺入的情况下不会产生任何图案。通过原子力显微镜(其形态和电模式)、卢瑟福背散射光谱、X 射线光电子能谱、扫描俄歇以及透射和扫描电子显微镜进行形态和成分分析。最初,纳米点结构随机出现,随着离子通量的增加,它们逐渐沿与 Fe 通量垂直的方向排列。随着通量的增加,它们聚结在一起,形成波纹图案。随着与金属源的距离减小(即金属含量增加),图案动态和特性分别变得更快和增强。对于最高的金属通量,波纹会变得相当大(高达 18 μ m)且更直,缺陷很少,图案波长接近 500 nm,同时保持表面粗糙度接近 15 nm。此外,对于固定离子通量,图案顺序会随着金属通量而改善。相反,图案顺序随离子通量增加的增强率并不依赖于金属通量。我们的实验观察与 Bradley 模型的预测和假设一致 [RM Bradley,Phys。Rev. B 87,205408(2013)] 几项成分和形态研究表明,波纹图案也是成分图案,其中波纹峰具有更高的铁硅化物含量,这与模型一致。同样,波纹结构沿着垂直于 Fe 通量的方向发展,并且图案波长随着金属通量的减少而增加,其行为与模型预测在性质上一致。
在未来几年中,用于科学目的的激光束将越来越多地用于天文望远镜。尽管望远镜站点附近的空中交通量通常极低,但必须解决同时发生的飞机意外照明风险(Wizinowich 等人1998)。正在建造一个用于近红外校正的自适应光学 (AO) 系统(Lloyd-Hart 等人1998),以部署在亚利桑那州南部霍普金斯山的一台新的 6.5 米望远镜(多镜面望远镜 (MMT) 转换)上(West 等人1997)。波前像差将通过参考沿望远镜光轴投射的 10 W 激光束产生的信标来测量(Jacobsen 等人1994)。激光调谐到原子钠的 D2 线,照亮中间层的钠原子。共振背散射光在望远镜上显示为人造“星”。旧的六镜配置中的 MMT 现已拆除,6.5 m 的施工正在快速进行,预计将于 1999 年秋季首次亮相。新的 AO 系统预计将在几个月后首次亮相。然而,在过去三年中,MMT 一直充当原型 AO 系统的试验台,包括一台 3 W 激光器(Ge 等人1998)。在此期间,我们制定了确保望远镜附近空中交通安全的程序。在激光活动开始前,通常会发布飞行员通知 (NOTAM)。激光从未指向 45° 天顶角以下。当预计或正在进行激光活动时,指定的激光安全官 (LSO) 必须始终在场,并且现场的专用电话线确保当地联邦航空管理局人员可以立即联系 LSO。最重要的是,我们开发了一种自动系统,旨在检测飞机并在任何潜在照明之前关闭激光。
胚胎端脑可大致细分为背部的皮质和海马体,以及腹部的 MGE、LGE 和 CGE。确定这些胚胎结构如何产生成熟大脑中的结构是了解端脑发育的关键。目前,人们对 MGE 和 LGE 中产生的细胞的发育和命运了解甚多。尽管 CGE 约占 E13.5 腹侧端脑的 40%,但对该区域的发育命运知之甚少。CGE 被定义为 MGE 和 LGE 融合成单一结构后方的区域,目前尚不清楚 CGE 是 MGE 还是 LGE 的后方延伸、两者的组合还是独特的结构。在小鼠中,我们对 MGE 和 LGE 的发育和命运的理解来自于许多不同的方法,包括(i)基于形态的推断(例如胚胎与成体拓扑结构的比较)1,2,(ii)分析发育过程中的基因表达模式 3,(iii)使用亲脂性染料标记的体外迁移测定 4–9 和(iv)分析缺乏影响这些结构的基因的突变小鼠 10–16 。综上所述,这些研究表明 MGE 和 LGE 产生了基底神经节(纹状体和苍白球),并且通过切向迁移,也是大脑皮层、海马和嗅球中大多数中间神经元的来源 17,18 。这些结构也被认为是少突胶质细胞的重要来源 19–23 。我们开发了一种方法,利用超声背散射显微镜 (UBM) 引导的同源移植来绘制 MGE 和 LGE 24 的命运图谱。这项先前的研究首次提供了体内证据,表明 MGE 细胞大量迁移到皮质,并在那里分化为中间神经元。这项研究还在体内证实了 LGE 主要产生纹状体 25 的投射神经元和嗅球的中间神经元。
开发了一种新的基于物理的模型,该模型可以准确预测从温度限制 (TL) 到全空间电荷限制 (FSCL) 区域的热电子发射发射电流。对热电子发射的实验观测表明,发射电流密度与温度 (J − T) (Miram) 曲线和发射电流密度与电压 (J − V) 曲线的 TL 和 FSCL 区域之间存在平滑过渡。了解 TL-FSCL 转变的温度和形状对于评估阴极的热电子发射性能(包括预测寿命)非常重要。然而,还没有基于第一原理物理的模型可以预测真实热电子阴极的平滑 TL-FSCL 转变区域,而无需应用物理上难以证明的先验假设或经验现象方程。先前对非均匀热电子发射的详细描述发现,3-D空间电荷、贴片场(基于局部功函数值的阴极表面静电势不均匀性)和肖特基势垒降低的影响会导致从具有棋盘格空间分布功函数值的模型热电子阴极表面到平滑的TL-FSCL过渡区域。在这项工作中,我们首次为商用分配器阴极构建了基于物理的非均匀发射模型。该发射模型是通过结合通过电子背散射衍射(EBSD)获得的阴极表面晶粒取向和来自密度泛函理论(DFT)计算的面取向特定的功函数值获得的。该模型可以构建阴极表面的二维发射电流密度图和相应的 J-T 和 J-V 曲线。预测的发射曲线与实验结果非常吻合,不仅在 TL 和 FSCL 区域,而且在 TL-FSCL 过渡区域也是如此。该模型提供了一种从商用阴极微结构预测热电子发射的方法,并提高了对热电子发射与阴极微结构之间关系的理解,这对真空电子设备的设计大有裨益。
课程描述 本课程专为具有材料科学与工程、物理学、地球科学、化学、生命科学或相关领域背景的学生而设计。本课程专门为以下学生设计:a) 学习 SEM 成像、衍射和光谱学的基本原理;b) 了解电子-样本相互作用、信号产生和检测;c) 正确解释各种类型的图像和相关的 X 射线光谱和衍射图案;d) 掌握适当的技能来解决实际材料的各种图像和微分析问题。本课程的学习成果包括 i) 理解关键概念和基本原理,ii) 正确选择适当的电子束参数(例如电压、电流、探针尺寸和焦深)以研究不同类型的材料(例如导体、半导体、绝缘体或聚合物),以及 iii) 了解如何消除图像、光谱和衍射图案中的伪影。希望学生专注于解决问题的技能,并熟练地利用现代 SEM 来解决具有挑战性的材料研究问题和产品开发问题。课程内容 本课程首先介绍电子束-样品相互作用,以及此类相互作用如何产生不同类型的有用信号,这些信号携带样品特定信息(形态、结构、元素分布等)。然后将广泛讨论影响各种类型电子探针形成的参数(例如高分辨率成像与微分析)。接下来将讨论不同类型的电子和X射线探测器以及如何使用这些探测器形成可解释的图像和/或光谱。在学期的第一部分,重点是理解探针形成和图像解释的基本原理,重点是如何为特定类型的样品选择合适的电子光学参数。在学期的第二部分,我们将讨论通过X射线对异质样品进行定性和定量成分分析、通过电子背散射衍射(EBSD)图案获取晶体材料的结构信息,以及如何使用低电压(低至数十伏)或可变压力SEM对非导电或湿样品进行成像。将讨论双光束 FIB-SEM(电子和聚焦离子束)显微镜和现代 SEM 中的原子分辨率成像。讲座时间:周一/周三下午 12:00-1:15;地点:CVAC 333(和 ASU Online);讲师:Jingyue (Jimmy) Liu 博士(https://isearch.asu.edu/profile/1816322);办公室:PSF 432A;电子邮件:jliu152@asu.edu。
教育经历 1980-84 英国剑桥大学冶金与材料科学博士学位 1980-81 英国剑桥大学自然科学研究生学习证书 1975-80 印度理工学院、贝拿勒斯印度教大学冶金工程技术学士学位 专业经历 2014 年至今 冶金与材料工程系教授、系主任、Freeport McMoRan 冶金与材料工程杰出教授 2009-2014 路易斯安那大学拉斐特分校材料科学与工程杰出教授(化学工程系) 2013-14 材料研究与创新研究所所长(创始所长 - 2013 年) 2013-14 路易斯安那大学拉斐特分校路易斯安那加速器中心副主任 2004-14 路易斯安那大学拉斐特分校结构与功能材料中心主任拉斐特(创始主任 - 2001 年构思,2004 年成立并获批准) 2001-14 路易斯安那大学拉斐特分校 Stuller 冶金学讲座教授兼教授 2012-至今 中国东北大学名誉教授 1984-98 印度国防冶金研究实验室科学家 研究兴趣 高强度高韧性组合金属和合金;纳米结构材料;生物材料;先进性能材料;能源系统材料;聚合物纳米复合材料 - 特别关注加工-微观结构-性能关系;变形和断裂。这些感兴趣的领域涉及使用广泛的材料表征技术,包括透射和扫描电子显微镜、电子背散射衍射 (EBSD)、电子断层扫描、原子力显微镜和机械测试。奖项、荣誉和专利 2013 年印度贝拿勒斯印度教大学杰出校友奖 2013 年路易斯安那大学拉斐特分校创新者奖 2012 年美国专利 (8197890 B2),“制造磁性纳米棒的方法。” 2011 年美国专利 (7964013 B2),“用于超高密度存储介质的 FeRh-FePt 核壳纳米结构。” 2009 年杰出大学教授 2009 年美国专利 (7504130 B1),“合成具有磁核和光催化壳的抗菌纳米粒子的方法:TiO 2 -NiFe 2 O 4 体系。” 2009 年美国专利 (7635518),“树枝状磁性纳米结构及其制造方法。” 2007 年英国材料研究所颁发的 2007 年 Charles Hatchett 奖。 2007年荣获英国材料学会颁发的2007年度复合材料奖。
339 DLA 表格 339,用于向服务 ESA 的 A1202 申请工程支持表格参考,将措辞插入招标的 POT 中,警告潜在投标人该部件具有可疑的铸造或锻造部件 AFCAT 航空锻造和铸造援助团队 - CAST-IT 和 FORGE-IT 团队的成员,为 DSCR AFS 美国铸造学会 AICS 自动点火燃烧合成 ALT 行政前置时间提供直接支持 - 从要求之日起到合同授予的天数。另请参阅 PLT AMC 美国金属铸造联盟 ASC 航空供应链 ATI 先进技术国际 BEKP 背散射电子 Kukuchi 图案 BSM 业务系统现代化 - DLA 采购系统,也称为 EBS CAST-IT AMC 应用工程师团队 CIDR 提高国防战备的铸件 CIR 提高战备的铸件 CMC 陶瓷基复合材料 CPT 临界点蚀温度 CRM 客户关系管理数据库 CSR 战备铸造解决方案 DCMA 国防合同管理局 DIBBS DLA 互联网投标委员会系统,DLA 使用的基于 Web 的招标和投标系统 DLA 国防后勤局 DMD 直接金属沉积(用于短期工具制造) DMS 制造来源减少 DMSMS 制造来源减少和材料短缺 DoD 国防部 DORRA DLA 运筹学与资源分析 DSCC 哥伦布国防供应中心(主要是陆地和海上系统) DSCP 费城国防供应中心(食品、服装、医疗设备和建筑用品) DSCR 国防里士满供应中心(主要是航空系统) EBS 电子商务系统 - DLA 采购系统,也称为 BSM eMall 基于互联网的电子商城,允许军事客户和其他授权政府客户搜索和订购物品 EMPA 电子探针微观分析 ESA 工程服务活动 - 武器系统项目办公室的工程功能。DLA 必须请求 ESA 的工程师支持解决零件技术问题 FDM 熔融沉积成型 - 一种快速成型方法 ForCasD 航空零件锻件和铸造数据库 HIP 热等静压 - 改善材料性能的铸件后处理 ICON 集成铸造订单网络 ICP 库存控制点(DSCR 或 DSCC) ICT 创新铸造技术 IMC 金属间基复合材料 IPG1 库存优先级组 1(高水平积压订单) IPT 集成流程团队 MetaL FACT 海陆锻造和铸造援助团队 - CAST-IT 和 FORGE-IT 团队的成员,为 DSCC 提供直接支持 MDWL 维护数据工作量(产品专家在采购前审查数据完整性和正确性的活动) MMC 金属基复合材料 MRL 制造准备水平