摘要 钛合金定向能量沉积 (DED) 因其在自由成型和再制造方面的灵活性而成为一种快速发展的技术。然而,沉积过程中凝固微观组织的不确定性限制了其发展。本文提出了一种人工神经网络 (ANN) 来研究晶界倾斜角与三个致病因素(即热梯度、晶体取向和马兰戈尼效应)之间的关系。在田口实验设计下进行了一系列线材 DED、光学显微镜 (OM) 和电子背散射衍射 (EBSD) 实验,以收集 ANN 的训练和测试数据。与传统的微观结构模拟方法相比,本文开发的策略和 ANN 模型被证明是一种描述 DED 制备 Ti6Al4V 中竞争性晶粒生长行为的有效方法。它们可用于实现定量微观结构模拟,并扩展到其他多晶材料凝固过程。
ASTM B 117 盐雾(雾)测试方法 ASTM B 487 通过显微镜检查横截面测量金属和氧化物涂层厚度的方法(DOD 采用) ASTM B 499 通过磁性方法测量涂层厚度的标准测试方法:磁性基底金属上的非磁性涂层(DOD 采用) ASTM B 567 通过 Beta 背散射法测量涂层厚度的方法 ASTM B 568 X 射线光谱法(DOD 采用) ASTM B 571 金属涂层附着力的测试方法 ASTM B 578 电镀涂层显微硬度的测试方法 ASTM E 18 金属材料的洛氏硬度和洛氏表面硬度的测试(DOD 采用) ASTM E 384 材料的显微硬度,测试方法 ASTM F 519 镀层的机械氢脆测试工艺和飞机维护化学品(国防部采用)
帮助研究人员完成资本采购流程,共同编写和编辑 15 份唯一来源和单一来源论证,并与大学设施部门合作准备设备安装空间,包括:手持式 X 射线荧光光谱仪、同位素比质谱仪、研究级荧光显微镜、超高效液相色谱质谱仪、多模协作机器人系统、一套学生级荧光显微镜、实验动物围栏、激光扫描共聚焦显微镜服务合同、物理系光学研究实验室的光学元件包、透射电子显微镜软件升级、电子背散射衍射检测器、蒙特克莱尔州立大学气象站、电感耦合光学发射光谱仪、离子色谱仪、Western Blot 系统、一套生物安全柜。• 与院长和大学设施部门合作,重新设计了 CCIS 的四楼
最高质量的大体积亚表面和 3D 信息 通常需要进行亚表面或三维表征以更好地了解样品的材料特性。在许多情况下,需要使用传统 Ga + FIB 仪器无法获取的大体积来获得具有代表性和相关性的结果。Helios 5 PFIB UXe DualBeam 配备可选的 Thermo Scientific Auto Slice & View 4 (AS&V4) 软件,具有出色的大电流性能,能够以多种模式最高质量、全自动地采集大体积 3D 数据集,包括但不限于用于最大材料对比度的 BSE 成像、用于成分信息的能量色散谱 (EDS) 和用于微观结构和晶体学信息的电子背散射衍射 (EBSD)。与 Thermo Scientific Avizo™ 可视化软件相结合,它可提供独特的工作流程解决方案,以实现纳米级最高分辨率、先进的 3D 表征和分析。
本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
摘要 采用选区激光熔化(SLM)成形技术制备Inconel 718合金并进行不同的退火处理。利用光学显微镜、扫描电子显微镜、电子背散射衍射和MTS试验机研究了不同退火处理下选区激光熔化成形的Inconel 718合金的组织、力学性能和疲劳性能。结果表明:均匀化和双时效退火后的Inconel 718合金组织变化最为明显,合金组织以再结晶组织为主,组织中含有大量退火孪晶,晶界平整。选区激光熔化成形的Inconel 718合金经不同的退火处理后屈服强度、抗拉强度和显微硬度均有较大提高,而断后伸长率明显下降。 Inconel 718合金经双重时效退火和固溶双重时效退火后的疲劳性能略有提高,而均匀双重时效退火后的疲劳性能略有下降。
ALARA 尽可能低 AR 衰减反射 CASL 轻水反应堆先进模拟联盟 CHF 临界热通量 COG CANDU 业主集团 CNL 加拿大核实验室 CNSC 加拿大核安全委员会 CRD 合作研究与开发 CS 碳钢 CT 排管 CTF COBRA-TF DAS 分布式天线系统 DCPD 直流电位降 DHC 延迟氢化物裂解 DOE 能源部 EBSD 电子背散射衍射 ECCS 应急堆芯冷却系统 EDX 能量色散 X 射线 EPR 电子顺磁共振 EPRI 电力研究院 ESC 端罩冷却 ETH 瑞士联邦理工学院 FAC 流动加速腐蚀(FAC) FEG 场发射枪 FEM 有限元模型 FHS 燃料处理系统 FIB 聚焦离子束 FM 加油机 FPGA 现场可编程门阵列 FTIR 傅里叶传输红外 HCSG 螺旋线圈蒸汽发生器HQP 高素质人才 IAEA 国际原子能机构 ICP 电感耦合等离子体
ALARA 尽可能低 AR 衰减反射 CASL 轻水反应堆先进模拟联盟 CHF 临界热通量 COG CANDU 业主集团 CNL 加拿大核实验室 CNSC 加拿大核安全委员会 CRD 合作研究与开发 CS 碳钢 CT 排管 CTF COBRA-TF DAS 分布式天线系统 DCPD 直流电位降 DHC 延迟氢化物裂解 DOE 能源部 EBSD 电子背散射衍射 ECCS 应急堆芯冷却系统 EDX 能量色散 X 射线 EPR 电子顺磁共振 EPRI 电力研究院 ESC 端罩冷却 ETH 瑞士联邦理工学院 FAC 流动加速腐蚀 (FAC) FEG 场发射枪 FEM 有限元模型 FHS 燃料处理系统 FIB 聚焦离子束 FM 加油机 FPGA 现场可编程门阵列 FTIR 傅里叶传输红外 HCSG 螺旋线圈蒸汽发生器 HQP 高素质人员 IAEA 国际原子能机构 ICP 电感耦合等离子体
图 1 化学异质性诱导裂纹停止作为防止氢脆的措施的概念,以及具有奥氏体内部异质 Mn 分布的高强度钢的微观结构。a,概念示意图。b,电子背散射衍射 (EBSD) 相加图像质量 (IQ) 图,显示奥氏体-铁素体双相微观结构。c,基于扫描电子显微镜 (SEM) 的能量色散 X 射线光谱 (EDX) 图,揭示了微观结构中的整体 Mn 分布模式。化学缓冲区是奥氏体相内 Mn 高度富集 (14~16 at.% Mn) 的区域(其中一些以椭圆框标记)。d,高角度环形暗场扫描透射电子显微镜 (HAADF-STEM) 观察和 EDX 分析,显示在一个奥氏体晶簇甚至一个奥氏体晶粒内存在多个富 Mn 区。分别从标记的圆形和矩形框拍摄的选区电子衍射 (SAED) 和高分辨率 TEM (HR-TEM) 图像放在 STEM 图像的右侧。EDX 线轮廓是从 EDX 图中箭头标记的区域拍摄的。
4C 结果 78 4C.1 传导量热法 78 4C.2 断裂表面和高压电子显微镜 80 4C.3 背散射电子成像 87 4C.3.a 20°C 时的水合 87 4C.3.a.1 水合测量 92 4C.3.b 5°C 时的水合 92 4C.3.c 水合速率测量 95 4C.3.d 氢氧化钙形态学 96 4C.4 热分析 97 4C.4.a 20°C 时的水合 97 4C.4.b 5°C 时的水合 99 4C.4.c 氢氧化钙形成 99 4C.4.d 非蒸发水 100 4C.5 红外光谱法 102 4C.5.a 20°C 水合 102 4C.5.b 5°C 水合 104 4C.6 X 射线粉末衍射法 104 4C.6.a 20°C 水合 106 4C.6.b 5°C 水合 109 4C.7 不同方法测定氢氧化钙 110 4C.8 抗压强度发展 113 4C.9 不同技术结果比较 113 4C.9.a Bse 成像和抗压强度发展 115 4C.9.b CH 和抗压强度发展 115 4C.9.c CH、结合水和 Bse 成像 115