摘要:NMDA受体拮抗剂具有神经和精神病疾病的治疗剂,包括神经退行性疾病,癫痫,创伤性脑损伤,药物滥用障碍(SUD)和严重抑郁症(MDD)。(S) - 酮胺是一种新型的抗抑郁药,快速作用抗抑郁药,可用于医疗用途。立体异构体(R) - 酮胺(Arketamine)目前正在开发耐治疗抑郁症(TRD)。该化合物在多种动物模型中表现出了功效。两项临床研究揭示了TRD和双相抑郁症的功效。该药物赞助商的一项研究最近未能达到先验的临床终点,但事后分析显示有效性。(r) - 酮胺的临床价值受到人类和啮齿动物的实验数据的支持,表明它的镇静度较小,不会产生明显的精神病性或解离效应,比(S)酮胺的滥用潜力较小,并且在神经和精神病学系列的动物模型中产生功效。(r) - 酮胺抗抑郁作用的作用机理被认为是由于NMDA受体拮抗和/或非NMDA受体机制引起的。我们建议对(R) - 酮胺进行进一步的临床实验,将为某些因当前药物提供的神经和精神疾病而创建新颖和改进的药物。
右美沙芬由 CYP2D6 代谢,具有广泛的首过代谢。同时使用强效 CYP2D6 酶抑制剂可使体内右美沙芬浓度增至正常水平的数倍。这会增加患者发生右美沙芬毒性作用(激动、精神错乱、震颤、失眠、腹泻和呼吸抑制)和患上血清素综合征的风险。强效 CYP2D6 酶抑制剂包括氟西汀、帕罗西汀、奎尼丁和特比萘芬。与奎尼丁同时使用时,右美沙芬的血浆浓度会增加高达 20 倍,这会增加该药物对中枢神经系统的不良影响。胺碘酮、氟卡宁和普罗帕酮、舍曲林、安非他酮、美沙酮、西那卡塞、氟哌啶醇、奋乃静和硫利达嗪对右美沙芬代谢也有类似的影响。如果必须同时使用 CYP2D6 抑制剂和右美沙芬,则应对患者进行监测,并可能需要减少右美沙芬的剂量。
在大多数国家使用全国代表性的基于人群的研究使用常规碘状况监视,在许多国家中,最新数据已有10年以上的历史。数据经常来自大学,医学专家和研究中心,通常很少得到卫生当局的支持或认可。只有瑞士和英国公开资助常规人口碘状况监测。在东欧和中亚国家(哈萨克斯坦和俄罗斯联邦除外)的调查仅在捐助机构的外部支持下进行,从而使未来的监视不可持续。
(R,S) - 和(S) - 酮胺在治疗耐药抑郁症(TRD)方面取得了重大进展,近年来已成为研究重点。但是,它们都有限制其临床用途的心理影响,分离效应和虐待责任的风险。最近的临床前和临床研究表明,与(R,S)和(S) - 酮胺相比,(R) - 酮胺具有更有效和持久的抗抑郁作用,副作用较少。然而,最近的一项小样本随机对照试验发现,尽管(r)酮胺在成人TRD治疗中的不良反应发生率较低,但其抗抑郁药的效率并不优于安慰剂组,表明其抗抑郁药的优势仍然需要进一步的验证和透明度。此外,越来越多的研究表明,(r) - 氯胺酮在预防和治疗医学领域或疾病中也可能有显着应用,例如认知疾病,围手术性麻醉,缺血性中风,parkinson的疾病,多发性硬化性,多种症状,骨质疾病,异常症,杂音,杂音,杂物,以及以下杂物。有机磷酸中毒。本文Brie-trip y回顾了与(r) - 酮胺有关的抗抑郁药的作用机理和研究机制,充分揭示了其应用潜力和开发前景,并为随后的扩展研究提供了一些参考和帮助。
多种药物都表现出肝毒性,必须对其进行监测,包括但不限于对乙酰氨基酚、胺碘酮、阿莫西林-克拉维酸和他汀类药物。此外,常规化疗药物具有明显的肝毒性作用,其中一些最常见的药物包括甲氨蝶呤、伊立替康和奥沙利铂 [8]。与化疗药物给药相关的肝毒性包括肝功能检查 (LFT) 升高、药物性肝炎、静脉闭塞性疾病、脂肪性肝炎,以及潜在的慢性表现,如纤维化和肝功能衰竭 [9-11]。通常情况下,可以通过密切监测提示肝损伤的肝功能指标升高和剂量减少来妥善处理化疗引起的肝毒性,如果肝功能指标恢复正常水平对剂量减少有抵抗力,则停止使用有害药物 [9-11]。治疗策略和管理的进一步复杂化是由于癌症患者的复杂性,因为许多患者同时患有其他疾病
第3-4周: - ((醛和酮)添加•藻类和酮的物理特性•醛酸和酮的酸度(? - 氢酸度)•aldheydes的制备•酮酮的制备•酮组的特征•carbonyl and ket in carboylic and ket intepitivity•carbonigitivity•carbonigientive•ket hepitivity•相对性化的反应性•ketone•ketone•亲核添加反应a。用水[Geminal Diols)] b。与HCN [氰基氢素形成] c。与grignard试剂[酒精形成] d。与酒精[半和乙酰形成] e。与原代胺[亚胺形成] f。与次级胺[烯胺形成] g。与酸性培养基中的氢嗪[氢援助形成] h。基本介质中的hildrazine''''''''''''''''''''''''''''''''''Wolff-kishner反应[Alkane组] i。 与羟胺[Oxime形成]J。 含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物与HCN [氰基氢素形成] c。与grignard试剂[酒精形成] d。与酒精[半和乙酰形成] e。与原代胺[亚胺形成] f。与次级胺[烯胺形成] g。与酸性培养基中的氢嗪[氢援助形成] h。基本介质中的hildrazine''''''''''''''''''''''''''''''''''Wolff-kishner反应[Alkane组] i。与羟胺[Oxime形成]J。 含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物与羟胺[Oxime形成]J。含半迦济[半谷唑组] k。与氢化物[酒精形成] l。与磷的“ Wittig反应” [烯烃形成] m。 NaOH“ cannizzaro反应” [不占比例的产物]•对?,? - 不饱和羰基的添加•某些生物亲核添加反应•药物合成•包括亲核添加反应•含有醛和含有药物的药物
在当代寻求无碳和可持续的生活方式的更广泛的背景下,基于锌水的电池以其内在的安全性,效果和环境友善而闻名。,作为一种新生的储能技术,锌 - 碘电池最近引起了大量的研究关注,以其各种基于锌的电池之间的循环寿命和速率性能出色。尽管如此,由于无法从根本上解决水溶液中高度水溶性多碘化物的溶解/扩散问题,因此,锌 - 碘电池的进步受到严重阻碍。这项研究受到提取概念的启发,提出了锌 - 碘电池的全面重新设计,包括电解质和细胞结构,以促进H级,成本效益,无班车和高度可回收的锌 - 碘电池的发展。这项工作提出了一个多功能的研究框架,用于推进锌 - 碘电池的实际实施。
在目前的工作中,通过[3+2]氮氧化物与碱的二氧化吡喃唑 - 螺旋螺旋衍生物合成了一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列二甲苯和三替代的吡唑螺旋螺旋衍生物,用于合成一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列碘介导的,无金属的途径。所有合成的氧唑衍生物均以FTIR,1 H NMR,13 C NMR和HRMS数据为特征。通过X射线分析证实了其中一种产品的结构,即乙基-3-(1,3-二苯基-1-4-吡唑-4-基)-5-苯基异恶唑-4-羧酸盐。将所有合成化合物均筛选为抗菌活性,并与标准药物Amoxicillin进行比较。某些化合物表现出与阿莫西林相当或更高的抗菌活性。此外,合成化合物表现出中度至优异的抗氧化活性。针对小鼠成纤维细胞(动物)和植物种子发芽细胞系(Vigna radiata)研究了所有产物的细胞毒性。
金属卤化物钙钛矿半导体在太阳能电池中表现出色,在薄膜中添加过量的碘化铅 (PbI 2 ),无论是作为介观粒子还是嵌入域,通常都会提高太阳能电池的性能。甲脒碘化铅 (FAPbI 3 ) 钙钛矿薄膜的原子分辨率扫描透射电子显微镜显微照片显示,FAPbI 3:PbI 2 界面非常相干。结果表明,这种界面相干性是通过 PbI 2 偏离其常见的 2H 六方相形成三角 3R 多型体来实现的,这是通过包含近八面体单元的弱范德华力层堆叠中的微小移动实现的。揭示了精确的晶体学界面关系和晶格错配。进一步表明,这种 3R 多型 PbI 2 具有与钙钛矿相似的 X 射线衍射 (XRD) 峰,因此基于 XRD 对 PbI 2 存在的量化不可靠。密度泛函理论表明,该界面不会在带隙中引入额外的电子态,因此在电子上是良性的。这些发现解释了为什么在钙钛矿薄膜生长过程中 PbI 2 略微过量可以帮助模板钙钛矿晶体生长并钝化界面缺陷,从而提高太阳能电池的性能。