1. 在两个杯子中倒入等量的水。在进行演示时让水达到室温。 2. 为全班同学举起速效冷敷袋和热敷袋。 3. 询问学生是否曾使用过这两种产品治疗伤口。 4. 向学生解释,化学反应是产生冷敷袋冷却和加热效果的原因。解释当冷敷袋内单独袋子中的盐化合物与水接触时,会发生化学反应。 5. 测量并记录两个杯子的水温。在白板或交互式白板上记录初始温度,让全班同学看得见。 6. 启动热敷袋。 7. 将热敷袋放入杯子中。 8. 测量并记录水温。在全班同学看得见的地方记录最终温度。 9. 从杯子中取出袋子。将袋子在班上传递,让学生观察热传递。 10. 向学生解释,在冷敷袋冷却和加热过程中,化学能转化为热能。
图 1. (a) 单层 (1L) MoSe 2 和 ReS 2 晶体结构。上图显示晶体结构的侧视图,下图显示晶体结构的顶视图。侧视图显示了这些层状材料上偶极子平面内取向的示意图。(b) 样品 1 (S1) 的 ReS 2 -MoSe 2 异质结构的光学图像。插图是样品侧视图的示意图。(c) MoSe 2 、ReS 2 和 HS 区域的拉曼光谱。HS 拉曼光谱由来自各个 1L 区域的不同振动模式组成。(d) 在透明蓝宝石基板上制作的类似异质结构的三个不同区域的吸收光谱数据(样品 2,S2)。MoSe 2 A 和 B 激子峰清晰可见,ReS 2 较低能量吸收峰用箭头标记。HS 光谱由两个 1L 区域的峰组成。
图2:a)沉积在银上的J-聚集膜的石版画区的暗场显微镜图像。该图案的设计包含圆形光漂白区域(CPA),直径范围为1至40 µm。相邻漂白区域之间的最小分离距离为20 µm,可以彼此隔离。样品中重复数十倍的模式,以测试实验结果的重复性。在40 µM CPA中,我们代表激光激发和视野。b)CPA的素描被聚焦激发的中心照亮。激光激发后,QD会因刺激模式在样品平面中传播而衰减。孵化的区域对应于激发发射器的体积,我们为模拟设定了非零的化学潜力。
可持续人机交互 (SHCI) 领域将环境问题添加到交互系统的设计中,无论是在制造还是使用过程中 [11]。为了让用户意识到他们的行为对环境的影响,生态反馈界面会感知并提供关于这些行为的相关信息 [6],例如:消耗的资源、产生的废物或资源状态。然而,Bremer 等人 [2] 指出,SHCI 参与者面临着以个人为中心的方法的局限性和批评,现在正转向影响团体或社区的方法。这样,以实践为导向的方法通过嵌入交互以及专业知识、规范和期望为团体和社区提供了设计框架 [1]。这种方法可以应用于能源使用问题 [1]。由于可再生能源的可用性是可变的并且没有有效的存储能力,转移能源需求是一种最大限度地利用可再生能源而不是不可再生能源的方法。为了支持住宅用户转移能源使用,Brewer 等人[3] 确定了三个挑战,这些挑战与用户对转变的理解、转变必须发生的时刻的定义以及可再生能源可用性的不可预测性有关。因此,设计转变实践具有挑战性,缺乏方法和流程。尽管无法解决所有实践方面(例如文化或政治),但我们表明,通过任务模型进行建模和分析任务可以通过识别潜在的苛刻任务并跟踪从当前实践任务到未来实践任务的实践转变来改进实践设计过程。
转化的生长因子-BETA(TGFβ)信号通路在建立免疫抑制性肿瘤微环境中起着至关重要的作用,使抗TGFβ剂成为癌症免疫疗法的重要领域。然而,针对上游细胞因子和受体的当前抗TGFβ药物的临床翻译仍然具有挑战性。因此,小分子抑制剂的发展特异性靶向TGFβ途径的下游主调节器SMAD4,将采取一种替代方法,具有明显的抗TGFβ信号传导的替代方法。在这项研究中,我们介绍了在超高通量筛选(UHTS)1536孔板格式中基于细胞裂解物的多路复用时间分辨荧光共振能量转移(TR-FRET)测定。该测定法可以同时监测SMAD4和SMAD3之间的蛋白质 - 蛋白质相互作用,以及SMADS及其共识DNA结合基序之间的蛋白质-DNA相互作用。多路复用的TR-FRET分析表现出高灵敏度,从而使单氨基酸分辨率下的Smad4-Smad3-DNA复合物进行了动态分析。此外,多路复用的UHTS分析证明了筛选小分子抑制剂的鲁棒性。通过对FDA批准的生物活性化合物库进行试验筛选,我们将gambogic Acid和Gambogenic Acodic鉴定为潜在的HIT化合物。这些概念验证的发现强调了我们优化的多重TR-FRET平台的大规模筛选的实用性,以发现针对SMAD4-SMAD3 – DNA复合物作为新型抗TGFβ信号剂的小分子抑制剂。
摘要:光点击反应结合了光驱动过程和传统点击化学的优势,已在表面功能化、聚合物共轭、光交联和蛋白质标记等多个领域得到应用。尽管取得了这些进展,但大多数光点击反应对紫外光的依赖性对其普遍应用造成了严重障碍,因为这种光可能会被系统中的其他分子吸收,导致其降解或发生不必要的反应。然而,开发一种简单有效的系统来实现红移光点击转换仍然具有挑战性。在这里,我们引入了三重态-三重态能量转移作为一种快速而选择性的方式来实现可见光诱导的光点击反应。具体而言,我们表明,在催化量(少至 5 mol%)的光敏剂存在下,9,10-菲醌 ( PQ s) 可以与富电子烯烃 ( ERA ) 有效反应。光环加成反应可以在绿光(530 nm)或橙光(590 nm)照射下实现,与经典的PQ-ERA体系相比,红移超过100 nm。此外,通过组合适当的反应物,我们建立了正交的蓝光和绿光诱导的光点击反应体系,其中产物的分布可以通过选择光的颜色来精确控制。
在本文中,我们将逆设计的伴随方法推广到非逆局介质。作为测试案例,我们使用级别集方法使用三维拓扑优化,以优化单向能量转移,以换取尖端源和观察点。为了实现此目的,我们引入了一套工具,chie pl y我们称之为“法拉第 - 偶相”方法,该方法允许在存在磁光介质的情况下进行有效的形状优化。我们基于非常通用的方程式进行优化,该方程是我们在非偏型培养基中得出能量转移的,并通过概括性的born序列链接到分析的分析序列,将其链接到张量的次数介绍性。本文代表了朝着实用的纳米光学隔离的垫脚石,通常被视为综合光子学的“圣杯”。
生物膜的平面外闪光,也称为随机位移,在调节细胞和细胞器中的许多基本生命过程中起着至关重要的作用。尽管有各种方法可用于量化膜动力学,但可以准确地量化具有快速和微小的闪光(例如线粒体)的复杂膜系统仍然是一个挑战。在这项工作中,我们提出了一种方法,该方法将金属/格拉烯诱导的能量转移(MIET/GIET)与荧光相关光谱(FCS)结合在一起,以量化膜的平面弹性与大约一个Nanonoles和One MicroseCond的平面空间分辨率。为了验证技术和时空分辨率,我们测量模型膜的弯曲起伏。此外,我们证明了MIET/GIET-FC在研究多样化的膜系统中的多功能性和适用性,包括人类红细胞的广泛研究的振动系统,以及两个未探索的膜系统,具有微小的闪光,一个微小的孔,一个孔隙孔膜膜,膜状膜和米孔粒粒度/外粒粒子/毛线粒粒粒粒粒粒粒粒粒粒粒粒粒粒粒度。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
摘要 磁化的太阳风在火星周围驱动着一个电流系统,维持着火星的感应磁层。太阳风还将能量传递给大气离子,造成持续的大气侵蚀,对火星的演化历史产生了深远的影响。在这里,我们使用基于图形处理单元 (GPU) 的混合等离子体模型 Amitis 首次重现了垂直于太阳风流动方向的行星际磁场下净电流和离子流的全局模式。得到的电流分布与观测结果相符,并揭示了更多细节。利用之前用相同模型表征的电场分布,我们首次计算了火星上整个等离子体和不同离子种类的能量传递率的空间分布。我们发现:(1)太阳风动能是驱动火星感应磁层的主要能量来源;(2)激波太阳风的能量通量从磁赤道平面流向感应磁尾中的等离子体片;(3)弓形激波和感应磁层边界都是发电机,等离子体能量从这里转移到电磁场;(4)行星离子充当负载并从电磁场中获取能量。最强烈的负载区域是行星离子羽流。本研究揭示的能量转移率的一般模式在感应磁层中很常见。它随上游条件的变化可以为观测到的离子逃逸变化提供物理见解。