肺癌是全球最常见的癌症之一,也是癌症死亡的主要原因(1)。大约10年前,在没有靶向药物的情况下,晚期肺癌的总生存期(OS)仅为10-12个月。随着越来越多靶向药物的不断应用,接受靶向治疗的晚期肺癌患者的OS延长至3年以上(2,3)。在EGFR突变的早期肺癌患者中,使用EGFR TKI作为辅助化疗也出现了同样的趋势(4,5)。靶向治疗的前提是发现更有针对性的驱动基因。长链非编码RNA(lncRNA)是一类RNA分子。它们不会翻译成蛋白质,通常长度超过200个核苷酸。LncRNA与癌症的发展密切相关(6-9)。异常表达的lncRNA已被发现是多种癌症的致癌基因(10-12)。然而,大多数 lncRNA 的功能仍不清楚。阐明它们在致癌作用中的功能和机制可能提供新的治疗靶点(13)。Li 等人分析了 Cancer Genome Atlas (TCGA) 数据库中肺腺癌 (LAUD) 的 RNA-seq 数据和 miRNA-seq 数据,以识别关键 lncRNA 并确定分子发病机制。核转录因子 Y 亚基 C 反义 RNA 1 (NFYC-AS1) 被发现是一种潜在的预后生物标志物 (14)。然而,作者并没有进一步验证 NFYC-AS1 在肺癌细胞系中的作用。关于 NFYC- AS1 功能的研究很少。例如,van der Plaat 等人通过分析全基因组关联研究 (GWAS) 数据发现 NFYC- AS1 可能在从不吸烟者的气流阻塞中发挥作用 (15)。然而,作者也没有在细胞系或动物模型中进一步验证NFYC-AS1的功能。到目前为止,还没有关于NFYC-AS1基因的分子功能、表型、动物模型、miRNA、转录因子靶点或HOMER转录等的数据。以下分子检测表明,NFYC-AS1可能通过自噬和凋亡以及MET / c-Myc致癌蛋白促进LAUD的增殖。有报道称,癌症中的自噬既是肿瘤抑制因子,也是肿瘤促进因子(16)。针对自噬相关途径可能是癌症治疗的一种有前途的策略。众所周知,细胞凋亡在癌症中起着关键作用
Siglecs 是众所周知的癌症免疫治疗靶点。目前的检查点抑制剂疗效有限,因此需要针对 Siglec-15 等靶点的新型疗法。目前,针对 Siglec-15 的小分子抑制剂尚未与涉及 CRC 进展的 microRNA 的特征性调控机制一起进行探索。因此,体外阐明了针对 Siglec-15 的小分子抑制剂,并研究了 microRNA 介导的抑制剂作用。我们的研究结果表明,SHG-8 分子对细胞活力、迁移和菌落形成具有显着的细胞毒性,IC 50 值约为 20µM。SHG-8 暴露在体外诱导 SW480 CRC 细胞晚期凋亡。值得注意的是,miR-6715b-3p 是高通量测序中上调最多的 miRNA,这也通过 RT-qPCR 进行了验证。 MiR-6715b-3p 可能调节 PTTG1IP,这是一种潜在的致癌基因,已通过 RT-qPCR 和计算机模拟分析进行了验证。此外,分子对接研究显示 SHG-8 与 Siglec-15 结合口袋相互作用,结合亲和力为 -5.4 kcal/mol,突出了其作为小分子抑制剂的作用。重要的是,Siglec-15 和 PD-L1 在相互排斥的癌细胞群中表达,表明与 PD-L1 拮抗剂联合治疗的潜力。
MAPK 抑制剂 (MAPKi) 仍然是转移性黑色素瘤标准治疗的重要组成部分。然而,对这些药物的获得性耐药性限制了它们的治疗效果。肿瘤细胞可以通过重新激活 ERK 而对 MAPKi 产生抗性。当发生这种情况时,肿瘤通常对停药变得敏感。这种药物成瘾表型是由致癌途径的过度激活引起的,这种现象通常被称为致癌基因过量。几种反馈机制参与调节 ERK 信号传导。然而,在突变黑色素瘤中充当致癌基因过量守门人的基因仍然未知。在这里,我们证明 ERK 磷酸酶 DUSP4 的耗竭会导致药物初治和药物耐药突变黑色素瘤细胞中的 MAPK 活化达到毒性水平。重要的是,ERK 过度激活与谱系定义基因(包括 MITF)的下调有关。我们的研究结果为治疗获得性 MAPKi 耐药性和无法耐受 MAPKi 的突变黑色素瘤患者提供了一种替代治疗策略。
1位环境和遗传毒理学实验室,路易斯维尔大学药理学与毒理学系,500 S Preston ST,RM 1422,RM 1422,美国肯塔基州路易斯维尔1位环境和遗传毒理学实验室,路易斯维尔大学药理学与毒理学系,500 S Preston ST,RM 1422,RM 1422,美国肯塔基州路易斯维尔
哺乳动物基因组中DNA甲基化的主要功能是抑制转座元素(TES)。在癌细胞中通常观察到的广泛的甲基化损失导致TE的表观遗传抑制丧失。衰老过程的特征是甲基甲基的变化。然而,这些表观基因组改变对沉默的影响及其功能后果尚不清楚。为了评估衰老中TES的表观遗传调节,我们在人类乳腺腔上皮细胞(LEPS)中介绍了DNA甲基化(LEPS),这是一种与年龄较大的乳腺癌有关的关键细胞谱系 - 来自年龄较大的乳腺癌。我们在这里报告说,几个TE亚家族在正常LEP中充当调节元素,并且这些子集的一部分显示出随着年龄的增长而显示一致的甲基化变化。在这些TES处的甲基化变化发生在谱系特异性转录因子结合位点,与谱系特异性的丧失一致。主要显示甲基化损失,而CpG岛(CGI)是Polycomb抑制性复合物2(PRC2)的靶标,显示衰老细胞中甲基化的增加。在衰老的LEP中,许多具有甲基化损失的TE都有乳腺癌样品中调节活性的证据。我们还表明,TES的甲基化变化会影响与腔乳腺癌相关的基因的调节。这些结果表明,衰老会导致TES的DNA甲基化变化,从而弥补了维持谱系特异性,并可能增加对乳腺癌的敏感性。
摘要背景:胸腺恶性肿瘤是一类罕见的异质性胸部癌症,根据世界卫生组织的组织病理学分类,胸腺恶性肿瘤可分为胸腺瘤和胸腺癌。文献中关于这些肿瘤生物学的数据有限,绝大多数数据是使用早期疾病的手术标本获得的。同时,晚期难治性胸腺肿瘤的治疗目前依赖于化疗,疗效有限。晚期难治性肿瘤的综合基因组分析 (CGP) 将为创新治疗开辟一些机会。患者和方法:共纳入 90 名和 174 名连续的胸腺瘤或胸腺癌患者,对他们的复发性难治性肿瘤的福尔马林固定石蜡包埋标本进行了测序。使用杂交捕获、基于接头连接的文库对多达 315 个癌症相关基因加上 28 个癌症中经常重排的基因的 37 个内含子进行测序,平均覆盖深度为 >500 倍。结果:胸腺瘤的基因组改变频率低(平均 1.8/肿瘤)且 TMB 水平低。超过 10% 的病例中发现的基因组改变是 CDKN2A/B 和 TP53 基因。在一例无法切除的 III 期 B3 型胸腺瘤中发现 NTRK1 基因扩增。胸腺癌的改变频率明显较高,为 4.0/肿瘤(P < .0001)。在 CDKN2A、KIT 和 PTEN/PI3K/MTOR 通路中观察到临床相关的基因组改变。胸腺癌中 TMB 升高并不常见,仅 6% 的病例具有 ≥ 10 个突变/Mb。结论:我们的队列是迄今为止最大的队列,报告了晚期疾病背景下胸腺上皮肿瘤的 CGP。在 KIT 、 PI3K 、 CDKN2A/B 或 NTRK 基因中识别出临床相关的基因组变异为使用靶向药物的潜在精准医疗方法提供了强有力的理由。一部分胸腺癌显示出高肿瘤突变负担,这可能是免疫检查点抑制剂疗效的预测因素。关键词:胸腺瘤;胸腺癌;靶向治疗;化疗;免疫治疗。
磁脑摄影(MEG)是研究生理学和心理学人类大脑的有说服力的工具。可以使用外部环境和内部心理学之间的变化推断,这要求我们识别不同的单个试验事件与事件相关的磁场(ERFS),该磁场(ERFS)源自大脑的不同功能区域。单个试验数据的当前重新注册方法主要用于脑电图(EEG)中与事件相关电位(ERP)。尽管MEG与脑电图共享相同的信号源,但其他脑组织的干扰少于识别ERF的MEG优势。在这项工作中,我们通过增强信号提出了一种新的试验听觉磁场(AEF)的新识别方法。我们发现,单个试验AEF的信号强度集中在颞叶的主要听觉皮层中,可以在2D图像中清楚地显示。TESE 2D图像通过具有100%精度的人工神经网络(ANN)识别,这实现了单个试验AEFS的自动识别。te方法不仅可以与源估计算法相结合以提高其准确性,而且还可以为使用MEG实施脑部计算机界面(BCI)铺平了道路。
内皮-间质转化已被描述为肿瘤中间质基质的来源,而肿瘤血管生成和血管生成中则提出了相反的过程。人类致癌病毒卡波西肉瘤疱疹病毒 (KSHV) 可以调节这两个过程,以便在感染 KS 致癌祖细胞时通过这种转变“大道”。内皮或间质循环祖细胞可以充当由炎性细胞因子募集的 KS 致癌祖细胞,因为 KSHV 可以通过内皮-间质和间质-内皮转化将一种细胞重新编程为另一种细胞。通过这些新见解,我们揭示了 KS 潜在致癌祖细胞的身份,同时了解了间充质内皮分化轴的生物学,并指出该轴是 KS 的治疗目标。
转录因子 (TF) 介导的基因调控通常在致癌过程中被破坏。TF 结合位点的 DNA 甲基化状态可能决定相应基因的转录活性。研究表明,芪类多酚,如紫檀芪 (PTS),可通过重塑 DNA 甲基化和基因表达发挥抗癌作用。然而,这些影响背后的机制仍不清楚。本文探讨了 PTS 处理的 MCF10CA1a 侵袭性乳腺癌细胞中致癌 TF OCT1 结合与从头 DNA 甲基转移酶 DNMT3B 结合之间的动态关系。使用染色质免疫沉淀 (ChIP) 和下一代测序,我们确定了 47 个基因调控区,这些区域在 PTS 作用下 OCT1 结合减少,DNMT3B 结合丰富。大多数这些基因被发现具有致癌功能。我们选择了三个候选基因 PRKCA、TNNT2 和 DANT2,以进一步研究机制,同时考虑 PRKCA
ALK,间变性淋巴瘤激酶;BRAF,v-raf 鼠肉瘤病毒致癌基因同源物 B1;EGFR,表皮生长因子受体;ERBB2,v-erb-b2 禽红细胞白血病病毒致癌基因同源物 2;IHC,免疫组织化学;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;MET,间充质上皮转变因子受体;PD-L1,程序性死亡配体 1;ROS1,ROS 原癌基因 1;TTF-1,甲状腺转录因子 1;WT,野生型。
