NAVSEA 标准项目 FY-24 项目编号:009-100 | 日期:2022 年 10 月 25 日 | 类别:I | 1. 范围:1.1 标题:船舶稳性;维护 2. 参考文献: 2.1 标准项目 2.2 T9070-AF-DPC-010/079-1,美国海军水面舰艇稳性和储备浮力设计规范和标准 2.3 541-6687001,CG-47 级舰艇补偿燃油箱,水上过程控制程序指南 2.4 541-6686789,DDG-51 级舰艇补偿燃油箱,水上过程控制程序准备指南 2.5 S9541-BF-OMI-010,LHD 油补偿系统 SCD 3263 2.6 S9LHA-AF-SIB-070,LHA 6 USS AMERICA,舰艇信息手册,第 2 卷,第 2 部分,润滑油、舰艇燃料、航空燃料和汽油,第 17 章至 19。3. 要求:3.1 执行工程计算,确保所有水面舰艇在整个可用期间保持稳性,计算结果应按要求提供给政府。3.1.1 稳性标准定义见参考 2.2 的第 6.1.1.2 和 8.1.9 条。3.1.1.1 增加或移除固体重量或水以保持船舶稳性。3.1.2 船舶侧倾不得超过 2 度。3.1.2.1 侧倾超过 2 度的,应在 4 小时内纠正。
DOE 的碳管理战略与我们于 2023 年 5 月启动的清洁燃料和产品计划 (Shot) 直接重叠。Shot 的目标是开发来自可持续碳源的经济高效的燃料和产品,到 2035 年实现温室气体净排放量减少 85% 以上。到 2050 年,Shot 旨在满足 100% 航空燃料、50% 海运、铁路和非公路燃料和 50% 碳氢化合物化学品的预计需求。预计 2050 年这些行业对燃料和产品的需求约为每年 4 亿公吨 (MMT)。实现这一目标需要大量可持续的碳基资源。DOE 预计,根据 2023 年十亿吨报告的预测,每年约有 1,0.5 亿公吨可用的生物质和废物原料,以及每年约 4.5 亿公吨的二氧化碳基原料,就可以实现这一目标。本战略文件仅讨论了能源部正在推行的基于二氧化碳的方法和结合碳捕获、转化和/或储存的生物质方法。能源部生物能源技术办公室制定的多年期计划中包含了对仅使用生物质的方法的更详细讨论。
DOE 的碳管理战略与我们于 2023 年 5 月启动的清洁燃料和产品计划 (Shot) 直接重叠。Shot 的目标是开发来自可持续碳源的经济高效的燃料和产品,到 2035 年实现温室气体净排放量减少 85% 以上。到 2050 年,Shot 旨在满足 100% 航空燃料、50% 海运、铁路和非公路燃料和 50% 碳氢化合物化学品的预计需求。预计 2050 年这些行业对燃料和产品的需求约为每年 4 亿公吨 (MMT)。实现这一目标需要大量可持续的碳基资源。DOE 预计,根据 2023 年十亿吨报告的预测,每年约有 1,0.5 亿公吨可用的生物质和废物原料,以及每年约 4.5 亿公吨的二氧化碳基原料,就可以实现这一目标。本战略文件仅讨论了能源部正在推行的基于二氧化碳的方法和结合碳捕获、转化和/或储存的生物质方法。能源部生物能源技术办公室制定的多年期计划中包含了对仅使用生物质的方法的更详细讨论。
将全球变暖限制为1.5°C以下的挑战要求所有行业立即实施新技术和更改实践。航空业占人类诱导的CO 2排放的2%,占所有运输排放的12%。脱碳行业很难实现,该航空业严重依赖于高密度的液体燃料。持续依靠所谓的可持续航空燃料,这些燃料使用第一代农业原料,这使问题更加复杂,从而在食品和饲料中创造了生物质之间的权衡,及其用作能源发电的原料。脱碳航空也是由于开发电动飞机的问题而具有挑战性的。替代原料已经存在,可以为减速气候变化提供更可行的途径。这样的选择是使用气体发酵转换温室气体(例如使用微生物乙糖原从食品生产和食物浪费)进入燃料。actogen是厌氧微生物,能够从气体CO,CO 2和H 2产生醇。澳大利亚提供的原料资源可用于彼此接近的H 2和CO 2生产,用于气体发酵。在这篇综述中,我们提出了天然气发酵技术提供的原则,方法和机会,以取代我们对澳大利亚航空燃料生产的化石燃料的依赖。
摘要。可以通过针对替代外加剂以及精确控制制造过程的多方面方法来促进建筑材料和与水泥和混凝土相关的工业过程的脱碳。减水化学外加剂在先进混凝土混合物的开发中发挥了至关重要的作用。为从玉米秸秆生物质生产航空燃料而开发的较新的生物质加工技术产生了更具反应性的木质素副产品,该副产品适合进行化学改性以模仿具有较小碳足迹的聚羧酸醚外加剂的性质。本研究考察了木质素基减水外加剂在用于 3D 打印的水泥浆和砂浆混合物中的使用。实验计划探索使用不同剂量的木质素基外加剂来生产具有适当挤出性和可建造性的 3D 打印样品。进行了流变学表征以确定各种混合物的流动曲线。最后,通过等温量热法监测水泥浆体的水化热,以评估木质素基掺合料对水泥水化过程的影响。本研究结果表明,使用生物质副产品(例如木质素基掺合料)具有巨大潜力,可以有效控制水泥基材料的新鲜状态性能。
许尔特,2025 年 1 月 21 日:继绿色协议之后,欧盟正在引领交通运输部门向气候中和转型。现行的交通法规通过规定的配额为航空和航运领域的可持续碳基燃料提供了独特的长期前景,特别是附件 IX 涵盖的生物质和合成 CO 2 基燃料。可再生碳倡议 (RCI) 的一份新报告制定并分析了 2050 年前碳基燃料需求的三种未来情景——每种情景都是现行政策规则下的可能发展。结果显示,对第二代生物质生物燃料的需求将大幅增加,主要是由于航空燃料和航运配额的增加。这一预测不仅强调了需要谨慎管理的生态平衡和资源可持续性的潜在风险,而且对需要可再生碳来消除其产品石化的其他行业构成了重大障碍。特别是,化学品和材料行业必须长期依赖生物碳和捕获碳作为原料。但由于与燃料行业直接竞争,且缺乏类似的监管激励,该行业获得第二代生物质和碳捕获的机会将受到严重限制。不过,生物燃料和合成燃料的生产也可以支持化学品中可再生碳的发展,因为生产过程中产生的一些副产品可以用作化工原料。
ATJ 酒精到喷气 ASTM 美国材料与试验协会 ANL 阿贡国家实验室 CAEP 航空环境保护委员会 CEF CORSIA 合格燃料 CLCA 后续生命周期评估 CORSIA 国际航空碳补偿和减排计划 CPO 棕榈油原油 CTBE 巴西生物乙醇科学技术实验室。 DDGS 干酒糟和可溶物 ETJ 乙醇制喷气燃料 FFA 游离脂肪酸 FOG 脂肪、油和油脂 FT 费托合成 GHG 温室气体排放 GWP 全球变暖潜能 HEFA 加氢酯和脂肪酸 iBuOH 异丁醇 JRC 联合研究中心 欧盟委员会 LEC 垃圾填埋场排放信用 LCA 生命周期评估 LCF 低碳航空燃料 LCI 生命周期清单 MIT 麻省理工学院 MSW 城市固体废物 NBC 非生物成分 PFAD 棕榈脂肪酸馏出物 PSF 泥炭沼泽森林 REC 回收排放信用 RPO 精炼棕榈油 SAF 可持续航空燃料 SIP 合成异构烷烃 SPK 合成石蜡煤油 SKA 含芳烃的合成煤油 UCO 废食用油 Unicamp 坎皮纳斯州立大学 WTP 井泵 WTWa 井唤醒
AAR 美国铁路协会 ACSCC 供应链竞争力咨询委员会 ARTBA 美国道路与运输建设者协会 ASCE 美国土木工程师学会 ASCENT 替代航空燃料与环境卓越中心 BCO 有益货物所有者 BIL 两党基础设施法 BLS 劳工统计局 BTS 运输统计局 CBO 国会预算办公室 CBP 海关和边境保护局 CDL 商业驾驶执照 CFS 商品流动调查 CISA 网络安全和基础设施安全局 CLEEN 持续降低能源、排放和噪音计划 COVID-19 2019 年冠状病毒病 CPIU 所有城市消费者的消费者价格指数 CRISI 综合铁路基础设施和安全改进拨款 DHS 美国国土安全部 DOC 美国商务部 DOD 美国国防部 DOE 美国能源部 DOL 美国劳工部 ED 美国教育部 EIA 能源信息署 EPA 环境保护署 ES 执行摘要 FAA 联邦航空管理局 FAC 货运咨询委员会 FAF 货运分析框架 FAR 联邦采购条例 FHWA 联邦公路管理局 FMC 联邦海事委员会 FMCSA 联邦汽车运输安全管理局 FRA 联邦铁路管理局 FRED 联邦储备委员会经济数据 GAO 政府问责局 GDP 国内生产总值
立即发布 2022 年 4 月 13 日,星期三 Greenview 董事总经理与 Cerilon GTL Inc. 签署谅解备忘录,以扩大 Greenview 工业门户开发项目 艾伯塔省 Valleyview Greenview Council 董事总经理在 4 月 12 日的会议上批准了与 Cerilon Incorporated 的子公司 Cerilon GTL 签署谅解备忘录,以购买 Greenview 工业门户 (GIG) 约 200 英亩(81 公顷)的土地。Cerilon 打算在该地点建造一座价值 28 亿美元的工厂,生产超低硫柴油和航空燃料。Cerilon 提议建造一座日产 24,000 桶的气转液 (GTL) 设施,用于生产清洁、环保、超低硫柴油和专业产品。 Cerilon GTL 工厂将对天然气进行重整,生成氢气和合成气,然后将其转化为费托合成液和蜡,创造过剩的电力供应机会,从而生产出超低硫产品。Cerilon GTL 将把其创新工艺和系统应用于下一代智能制造技术。GTL 工厂还将捕获二氧化碳并实施碳捕获和封存工艺 (CCS),使 Cerilon GTL 工厂成为世界上碳足迹最低的 GTL 工厂。
请求有关可再生丙烷生产技术的信息,并使用日期:7/9/2024主题:信息(RFI)说明美国能源部(DOE),能源效率和可再生能源(EERE)生物环境技术办公室(BIOERE)技术办公室(BETO)正在要求有关与Crevertion&Development和Development of Convertion&Development和Development&D)的信息和反馈(REAK)。此RFI的重点是了解可再生丙烷和其他可再生气体中间体的生产和使用供应链。具体来说,DOE想了解研发增加可再生丙烷的生存能力,以追求可持续航空燃料的新生产途径和市政废物的其他高影响力产品;农业残留物;森林资源;以及脂肪,油和油脂。在美国的背景,丙烷消耗平均每天约100万桶,约占总能源消耗的1%。2传统上,丙烷供应链起源于天然气加工副产品或原油炼油副产品。最近,可再生丙烷已成为生物燃料行业的新副产品或产品。例如,在生物脂肪,油和油脂(包括氢酯和脂肪酸(HEFA))的氢化物质中,将丙烷从甘油三酸酯上裂解,丙烷产量为5%,重量为5%。如果碳氢化合物进一步加热以增加可持续的航空燃料产量,则可能还有其他丙烷和其他气体中间体。3其他可再生丙烷和其他可再生气态中间体的生产,利用市政废物,农业残留物和森林资源也可能不在