针对降低全经济排放的政策,由于 SAF 的生命周期 CO 2 排放量略高,因此为生物柴油和可再生柴油提供的温室气体减排额度高于 SAF,适用于某些转化技术和工厂配置。2 SAF 的潜在生产经济性比其他可再生燃料类型更具挑战性,因为当前技术通常每单位原料产生的燃料更少,需要更多的能源投入,并且公认的避免温室气体 (GHG) 排放量更少。如果可再生燃料是降低整个运输部门碳足迹的唯一选择,那么脱碳政策将旨在产生最佳的减排结果,这可能会将可再生能源主要分配给地面和海上运输,而航空燃料则有限。然而,由于地面和海上运输的燃料转换选项更容易获得,而且航空业在目前的运输部门温室气体政策下基本上被排除在外,目前的做法错失了航空减排的机会。此外,SAF 的其他环境协同效益也有据可查,包括常规空气污染物、
根据联邦航空管理局的研究,仅美国航空公司每年就燃烧 162 亿加仑的航空燃料,导致美国空气污染的 3% 以上,航空业贡献了全球空气污染的 1% 以上。与其他污染源相比,这些数字可能看起来微不足道,但航空业仅占世界贸易量的 0.5%,而全球能源消耗量为 2.2%。目前电池和电动机的进步并不能在不久的将来取代燃气涡轮发动机,特别是对于远程飞机而言。本文介绍了一种 BWB 飞机的概念设计,该飞机可载客 160 人,航程 9200 公里,巡航速度为 0.77 马赫数,可通过 FAR 25 认证。设计非常规配置的方法包括传统的飞机设计方法和新颖的方法。在任何航程方程中,升阻比都起着重要作用。对于 BWB 飞机来说,这个比率相当高,而且随着发动机效率的提高,每位乘客每公里的燃油消耗量可以大幅降低。与具有类似载客量和任务特征的传统飞机相比,BWB 飞机的一体式设计提供了较低的空重。
摘要 根据联邦航空管理局的研究,仅美国航空公司每年就要燃烧 162 亿加仑的航空燃料,导致美国空气污染占全国 3% 以上。航空业贡献了全球空气污染的 1% 以上。与其他污染源相比,这些数字似乎微不足道,但航空业仅占世界贸易货运量的 0.5%,而全球能源消耗量为 2.2%。目前电池和电动机的进步并不能在不久的将来取代燃气涡轮发动机,特别是对于远程飞机而言。本文介绍了一种 BWB 飞机的概念设计,该飞机可载客 160 人,航程 9200 公里,巡航速度为 0.77 马赫数,可通过 FAR 25 认证。设计非常规配置的方法包括传统的飞机设计方法和新方法。在任何航程方程中,升阻比都起着重要作用。对于 BWB 飞机来说,这个比率相当高,而且随着发动机效率的提高,每位乘客每公里的燃油消耗量可以大幅降低。与具有类似载客量和任务特征的传统飞机相比,BWB 飞机的一体式设计提供了较低的空重。
已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
政策项目运营先进铁路能源储存 1,000 100% 1,000 1,000 秒 132(22) 雅卡玛民族先进铁路能源储存的附文。替代航空燃料 600 0% 0 清洁建筑数据库扩展 975 0% 0 清洁能源许可/规划 10,000 0% 0 清洁能源选址协调 3,152 0% 0 清洁技术工作 352 0% 0 气候适应战略 167 0% 0 两用太阳能试点 10,664 0% 0 能源援助 35,000 100% 35,000 能源援助 - 计划设计 300 0% 0 能源审计 - 公共建筑 20,592 0% 0 能源升级导航计划 250 60% 150 秒 132(16) 能源回扣导航 - 优先考虑弱势群体拥有的建筑并将 OBC 转换为清洁能源。电网公式计划支持 708 0% 0 HEAL 法案实施 3,096 0% 0 地方政府气候规划 40,953 40% 16,381 地方政府鲑鱼恢复 2,747 0% 0 Port Gamble 海岸线恢复 2,400 100% 2,400 2,400 130(29) 号法案拨款给 Port Gamble S'Klallam 部落。智能建筑 250 0% 0 输电规划与倡导 1,024 0% 0 总计 134,230 54,931 3,400
表 5-1 机场参考代码 B-I 的机场规划标准(仅限小型飞机) ...................................................................................................... 5-3 表 5-2 飞机分类 ...................................................................................................................................... 5-5 表 5-3 需求与容量 ............................................................................................................................. 5-8 表 5-4 美国联邦航空局建议的怀特曼机场跑道长度 ............................................................................. 5-10 表 5-5 公布的声明距离 ............................................................................................................. 5-12 表 5-6 跑道保护区尺寸 ............................................................................................................. 5-16 表 5-7 通用航空航站楼要求的推导 ............................................................................................. 5-20 表 5-8 通用航空航站楼区域要求 ............................................................................................................. 5-21 表 5-9 临时飞机停机坪上应停放的临时飞机 ............................................................................................. 5-22 表 5-10 飞机存放机库要求(基于 TAF 协调) .................................. 5-25 表 5-11 基础飞机存储机库比较 .............................................................................................. 5-25 表 5-12 怀特曼系留设施 .............................................................................................................. 5-26 表 5-13 通用航空用户的汽车停车要求 ...................................................................................... 5-26 表 5-14 航空燃料储存要求 ...................................................................................................... 5-27 表 5-15 陆侧要求摘要 ............................................................................................................. 5-28 表 5-16 机场特征测量工具 ...................................................................................................... 5-29 表 5-17 怀特曼机场的陆地区域 ................................................................................................ 5-32
在过去几年中,净碳碳的道路上出现了许多挑战。其中三个是(1)直接的碳氢化合物补贴在2022年达到1万亿美元,4倍六年平均水平; (2)煤炭消费恢复向上趋势; (3)全国确定的贡献(NDC)仍需要额外减少估计的2030 CO 2等效排放,以保持1.5°C的步伐。但是,技术创新的影响留出了乐观的余地。通过分析全球所有关键发射领域的100多种脱碳技术的应用多种应用,我们得出了五个关键结论。(1)我们确定了某些关键技术(例如太阳能电池板和电池)的成本通缩和改善的负担能力的重新出现。(2)随着电池恢复其通缩趋势,运输的脱碳变为30%。(3)较高利率对整体成本曲线的影响实际上是有限的,尽管这对于可再生能源部门的碳减排成本是有限的。(4)政策仍然支持,我们确定了5000亿美元的项目公告,这是根据《通货膨胀降低法》驱动的,根据我们的估计,美国的脱碳成本曲线降低了75%。(5)生物能源继续发展其作用,可再生天然气和可持续的航空燃料在重型运输,工业和建筑物中获得动力。
预计到 2050 年,全球 1060 亿加仑(国内 210 亿加仑)商用喷气燃料市场将增长至 2300 亿加仑以上(美国 EIA 2020a)。具有成本竞争力、环境可持续的航空燃料 (SAF) 被认为是将碳增长与市场增长脱钩的关键部分。可再生和废弃的碳可以为低成本、清洁燃烧和低烟尘产生的喷气燃料提供途径。研究表明,有机会生产燃料,其中芳烃最初通过添加可再生异构烷烃稀释,芳烃随后完全被环烷烃取代,最后引入为喷气燃料消费者提供基于任务的价值的高性能分子。这种燃料途径的关键是从廉价资源中获取三种 SAF 混合原料——异构烷、环烷和高性能分子。从废碳中获取资源时,通常会有额外的好处,例如从湿污泥中获取碳时,水会更清洁;从城市固体废物或塑料废物中获取碳时,进入垃圾填埋场的废物更少。喷气燃料的特性与汽油和柴油不同,因此,如果从最终结果入手,研究将最成功。
航空燃料,替代燃料和替代燃料混合物(国会研究服务,2023年)。TC45Z和到期的规定之间的主要区别在于,尽管后者补贴了特定类型的低GHG发射燃料,但前者是技术中性的,旨在补贴任何具有零或低GHG排放的运输燃料的生产。TC45Z有望向生物燃料炼油厂使用,用于2024年以后生产的合格运输燃料,并在2027年12月31日出售。TC45Z有可能为美国燃料生产设施节省大量税收,以生产“清洁”燃料,该燃料定义为每100万英国热量单元(50千克CO 2 E / 1 MMBTU)生产的燃料,其燃料不超过50公斤二氧化碳。2022 IRA定义了公式,以计算出每吨清洁燃料的信用价值为$ 0.20×[1 - (kg of co 2 e每mmbtu / 50)],其中方括号中的表达式称为排放因子(EF)。可持续航空燃料(SAF)的基本支付率高于其他燃料:0.35美元而不是0.20美元。最后,如果炼油厂满足了某些工资和学徒要求,则基本支付率从非SAF的0.20美元增加到1.00美元,SAF的$ 0.35提高到$ 0.35。
合资企业/子公司)。为了满足不断增长的液化石油气需求,贵公司继续专注于增加装瓶能力和液化石油气储存能力。今年,阿萨姆邦 HPCL 的第一家液化石油气工厂已在 Goalpara 投入使用。HPCL 还在北方邦贡达投入了 120 TMTPA 容量的液化石油气工厂,并在各个地点投入了额外的 5.5 TMT 液化石油气堆垛式储存容器。从芒格洛尔码头到芒格洛尔液化石油气进口设施的管道投入使用有助于提高运营效率并减少将液化石油气卸载到进口码头的船舶的周转时间。本年度,哈里亚纳邦希萨尔的新 POL 仓库投入使用,同时在巴瓦拉现有拉曼曼迪-巴哈杜尔加尔管道 (RBPL) 上铺设了 10 公里专用分接管道,这将有助于进一步优化物流成本。本年度,随着阿萨姆邦鲁普西新 ASF 的投入使用,航空燃料网络得到加强。