生物降解因条件温和、成本低廉、不产生二次污染等优点而受到广泛关注。6,7全球三分之二以上的N2O排放来源于土壤生态圈和水圈,在微生物反硝化途径的最后一步可以还原为无害的氮气(N2)。8–10一氧化二氮还原酶(N2OR)是唯一进行生物反硝化过程的酶,11,12因此,有效利用N2OR对于通过生物方法有效控制N2O排放至关重要。N2OR是一种周质多铜酶,为头尾相连的同型二聚体,每个单体包括两个结构域:C端的电子转移双核CuA中心和N端的催化四核CuZ中心。 13,14通常,CuA由6个氨基酸残基配体,包括1个蛋氨酸、1个色氨酸、2个半胱氨酸和2个组氨酸;CuZ则由7个组氨酸配体。15,16基于N 2 OR的三维结构,对N 2 O催化还原机理的一致看法是,N 2 O与CuZ的催化活性位点结合,然后电子从CuA转移,将N 2 O转化为N 2 。
摘要:类似甲基转移酶的3(METTL3)和METTL14形成了一种催化最丰富的内部mRNA修饰的异二聚体复合物,N 6-甲基腺苷(M 6 A)。mettl3是结合二叶酸S-腺苷蛋氨酸(SAM)的催化亚基,而Mettl14参与mRNA结合。m 6修饰提供了对基因表达的转录后水平控制,因为它影响了mRNA生命周期的几乎所有阶段,包括剪接,核输出,翻译和衰减。有越来越多的证据表明Mettl3在急性髓样白血病中的致癌作用。在这里,我们使用催化亚基METTL3的结构和动态细节来开发与SAM竞争的小分子抑制剂。从通过高通量对接识别的命中开始,采用蛋白质晶体学和分子动力学模拟来指导抑制活性的优化。通过均匀分辨荧光测定法测量的效力成功提高了8000倍。优化化合物对脱靶RNA甲基转移酶METTL1和METTL16具有选择性。关键字:Mettl3/Mettl14,表面参考,计算机辅助药物设计(CADD),分子动力学,M 6 A-RNA,SAR■简介
发生在心脏,血管或血浆中,其中其他BDNF角色仍被发现[2]。已经证明了多个PLE研究,BDNF可以被视为各种疾病中的多功能生物标志物。BDNF的外周浓度降低[3-11],但在内科中也有大量的BDNF研究。在2型糖尿病和代谢综合征(包括肥胖症和血脂异常)的患者中已经注意到低浓度的循环BDNF [12]。此外,血清BDNF浓度与心血管功能障碍有关。因此,在动脉粥样硬化[13],慢性心力衰竭(CHF)[1,14],高血压[15]或缺血性心脏病(IHD)[16]中注意到BDNF浓度降低。此外,血液BDNF浓度与冠状动脉钙化程度[15]和CHF的进展[1]成反比。此外,血清BDNF浓度降低与CHF患者的死亡和再寄托症的独立危险因素的预后较差有关[14]。相比之下,在微血管肢体和ST催化性心肌梗塞的患者中发现了较高的BDNF浓度[17,18]。bdnf由在染色体11。BDNF基因中常见的单核多态性(SNP),其中蛋氨酸(MET)替代CORDON 66(Val66met)也与神经精神上的,代谢性或心血管疾病(CVD)[19,20]相关。
醋酸钙 IF001-00 醋酸地塞米松 IF002-00 醋酸地塞米松乳膏 EF001-00 醋酸氢化可的松 IF003-00 醋酸甲羟孕酮 IF004-01 醋酸钠 IF005-00 乙酰唑胺 IF006-00 乙酰半胱氨酸 IF007-00 N-乙酰-L-蛋氨酸 IF008-00 阿昔洛韦 IF009-00 阿昔洛韦片 EF002-00 阿昔洛韦乳膏 EF003-00 乙酰水杨酸 IF010-01 乙酰水杨酸片 EF004-00 抗坏血酸IF011-01 抗坏血酸片 EF005-00 抗坏血酸注射液 EF006-00 苯甲酸 IF012-01 硼酸 IF013-00 柠檬酸 IF014-00 脱氢胆酸 IF015-00 硬脂酸 IF016-00 叶酸 IF017-00 叶酸片 EF007-00 磷酸 IF018-00 乳酸 IF019-00 甲芬那酸 IF020-01 萘啶酸 IF021-00 萘啶酸片 EF008-00 萘啶酸口服混悬液 EF009-00烟酸 IF022-01 对氨基苯甲酸 IF023-00 水杨酸 IF024-01 山梨酸 IF025-00 三氯乙酸 IF026-00 十一烯酸 IF027-00 腺苷 IF028-01 琼脂 IF029-00 灌溉用无菌水 IF030-00 注射用水 IF031-00 纯净水 IF032-00
摘要:肝脏疾病每年在全球造成约200万人死亡,并且在过去十年中发生了不断发病的率。肝脏疾病的危险因素包括饮酒,肥胖,糖尿病,肝毒性物质(如霉素)的摄入,病毒感染和遗传决定因素。肝癌是第六大流行的癌症,是死亡率的第三个(男性第二)。低存活率(5年内少于20%)部分用晚期诊断来解释,这表明需要新的早期分子生物标志物。单碳代谢会整合叶酸和蛋氨酸循环,并参与必要的细胞过程,例如氧化还原稳态维持以及通过产生中间代谢物(如半胱氨酸和S-腺苷甲氨酸)来调节甲基化反应。单碳代谢具有组织特定的构造,在肝脏中,参与的酶大量表达 - 维持肝细胞分化的要求。有针对性的蛋白质组学研究表明,肝细胞癌和肝硬化的显着不同,这表明监测一碳代谢酶可用于肝病患者的地层分层,并为其临床管理开发精确的药物策略。在这里,描述了对肝病中一种碳代谢的重编程,并讨论了质谱对跟进这些改变的作用。
对肽作为候选肽的兴趣日益增加,用于制备抗体 - 当前治疗剂中的药物共轭物刺激了人们对新的生物缀合策略的兴趣增加。引入新方法来发现其他类型的肽和蛋白质修饰对研究人员的重要性和吸引力3 - 7。的确,以前可用于标记和修饰肽和蛋白质的氨基酸残基。然而,开发更多针对各个氨基酸的方法有望允许化学生物学,生命科学和临床医学领域的科学家将这些方法应用于特定目的3-13。例如,在最近的,有效的PD介导的方法中,该概念体现在Buchwald和Pentelute 14、15中报道的半胱氨酸的芳基化方法中。此外,靶向靶向不良的亲核,表面暴露较少的疏水氨基酸残基的生物缀合方法也吸引了研究人员在这一领域的注意。通过氧化还原反应性的蛋氨酸生物结合。在过去的几十年中,标记氨基酸残基的传统方法需要引入相对不反应性氨基酸的反应性试剂,或采用相对于半胱氨酸(Cys)或赖氨酸(Lys)(Lys)10、11、11、18、19的电力。现在已经将主动标记试剂添加到生物分子系统中,但与其选择性,毒性和生物相容性有关的问题仍然是科学家的关注点。此外,常识告诉我们
csir净生活科学问题与解决方案Q1。关于植物植物植物(PHY),蓝细菌植物色素1(CPH1)和细菌植物色素样蛋白(BPHP),以下哪种陈述中的哪一种是不正确的?(a)PHY在C末端部分中有两个PRD域。(b)CPH1和BPHP在N末端部分具有组氨酸激酶结构域。(c)GAF结构域存在于PHY,CPH1和BPHP的N末端部分中。(d)形成连锁的半胱氨酸残基位于诸如PHY和CPH1之类的规范植物色素中的GAF结构域中。Q2。 以下哪一项称为结核酸? (a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。 大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。 该基因与以下哪种植物素有关? (a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。 在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。 在每个正常的人类红细胞中大约存在多少血红蛋白? (a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。 涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项? (a)Synaptojanin(b)AP2(C)网格蛋白(D)DynaminQ2。以下哪一项称为结核酸?(a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。该基因与以下哪种植物素有关?(a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。在每个正常的人类红细胞中大约存在多少血红蛋白?(a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项?(a)Synaptojanin(b)AP2(C)网格蛋白(D)Dynamin
要描述的实验与组蛋白在核功能中的作用有关,特别强调了生物合成反应,这些反应通过引入乙酰基和甲基来改变组蛋白的结构。使用乙酸-C14和蛋氨酸 - 甲基-C'4在孤立的小牛胸腺核中研究了这些反应(参见参见参考文献1)作为前体,将它们的不合格与C14-赖氨酸和其他氨基酸的不合格进行比较,并测试普罗蛋白对不同组蛋白分数的合成的影响。将提供证据,以表明在细胞核中,组蛋白的乙酰化和甲基化很可能发生在多肽链完成后。尤其是乙酰化的组蛋白结构的这种修饰可能会影响组蛋白在体内抑制核糖核酸合成的能力。这种观点得到了以下发现的支持:当孤立的精氨酸组蛋白经过有限的乙酰化时,它们会因小牛胸腺核的DNA依赖性RNA聚合酶的RNA合成抑制剂而失去了许多有效性,因此它们的有效性很大。然而,这种修饰的组蛋白仍然是强烈的碱性蛋白质,它保留了与其得出的母体组蛋白相当的DNA的亲和力。这些发现介绍了组蛋白对核RNA的影响可能涉及的可能性不仅仅涉及对RNA合成的简单抑制,并且可能存在更微妙的机制,这些机制允许抑制和重新激活RNA沿染色体的RNA产生。在过去的几年中,对组蛋白作为染色体活性的调节剂的兴趣已大大提高,因为越来越多的实验证据已经积累了支持组蛋白的作用是抑制染色体
螺旋藻是蓝色绿藻。它含有18种氨基酸,谷氨酰胺,甘氨酸,组氨酸,赖氨酸,蛋氨酸,肌酸,肌酸,半胱氨酸,苯丙氨酸,甲基丙氨酸,丝氨酸,脯氨酸,色氨酸,天质素,吡啶酸和丙酮酸和诸如生物酸,硫酸酸性,硫酸酸性,纤维化酸脂蛋白,纤维化酸酸盐酸盐,inikical酸酸盐酸盐,吡啶酸维生素和维生素β-胡萝卜素和维生素B12。近年来,已经在粒土培养中进行了尝试,以用植物提取物加固桑树叶,以提高桑is叶的质量和蚕效率,从而提高茧的生产和丝质质量。Bombyx Mori的幼虫和茧特征受植物提取物Xanthium indimum的影响(Pardeshi and Bajad,2014年)。在幼虫和壳重量的cocoon cocoon的商业特征随后对叶子的叶子和壳的商业特征进行口头效果,并补充了cyanobacteria and cyanobacteria(Kumar and and.kumar et and。)。Spirulina supplemented mulberry leaf found to be efficient in increasing larval and cocoon characters when orally fed to Bombyx mori (Sangamithirai et al.,2014).The growth rate of silkworm larvae and cocoon characters of silkworm Bombyx mori enhanced by Spirulina as it exhibits the presence of certain growth stimulant activity has been observed (Kumar and Balasubramanian, 2014年)。目前的研究是研究螺旋藻对茧定量参数的影响,即茧的重量,壳重量,壳百分比。
氨基酸改性石墨烯氧化石墨烯衍生物(GO-AA)作为活性材料,用于捕获和随之而来的有机污染物的电化学检测。草甘膦(gly)是许多水室中的双甲虫,被选为基准物种,以测试这些材料的电活性性质的有效性,从而可以直接证明捕获事件的证据。l-赖氨酸,L-精氨酸或L-蛋氨酸通过环氧环开口反应在GO表面移植,促进了氨基酸结合,并伴有GO的部分减少。合成过程导致电荷电阻从8.1kΩ下降到各种GO-AA的0.8 - 2.1kΩ,支持这些材料在电化学传感中的适用性。将所得的ly-赖氨酸,精氨酸和Go-Methionine剥削出来从水中吸附。Go-赖氨酸与Gly具有最强的相互作用,1小时后的去除效率为76%,比颗粒活性碳(工业基准的吸附剂)高约2倍。go-aas的效果优于原始的未修饰材料,当被用作捕获和在电化学检测Gly之后的主动材料时。Go-赖氨酸表现出最佳的敏感性,即使在浓度水平下降至2μg/L时也可以在水中识别Gly。mo lecular动力学模拟证实,该材料的增强性能可以归因于Lys部分和Gly之间的氢键和盐桥相互作用,该相互作用源自氢键和盐桥相互作用。