摘要 - 成人海马的亚晶体区(SGZ)中的神经发生,可以通过多种手段来刺激,包括通过将实验动物暴露于丰富的环境中,从而提供额外的鼻子,社交和运动刺激。在丰富的动物中产生的有形健康和认知益处,包括改善对精神病,神经学和神经退行性疾病的建模,这可能会影响人类,这可能部分是由于神经元的产生增强所致。神经元反应富集的关键因素是释放脑衍生的神经营养因子(BDNF)和有丝分裂原活化蛋白激酶(MAPK)级联反应的激活,这可能导致刺激Neuroogenese或Neuroogenese的刺激。有丝分裂原和应激激活的蛋白激酶1(MSK1)是BDNF和MAPK下游的一种核酶,可调节转录。MSK1先前已经与缺乏MSK1蛋白的小鼠的研究有关基础和刺激的神经发生。在本研究中,使用仅缺乏MSK1激酶活性的小鼠,我们表明SGZ(KI-67染色)的细胞增殖速率没有由MSK1激酶DEAD(KD)突变造成的,并且与控制后水平的水平没有分歧。然而,与野生型小鼠相比,在标准housed和富集的MSK1 KD小鼠中,双铁蛋白(DCX)阳性细胞的数量都更大。2020年作者。由Elsevier Ltd代表IBRO出版。这是CC BY-NC-ND许可证(http://crea-tivecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些观察结果表明,尽管MSK1不影响神经元前体的增殖基础速率,但MSK1负责调节注定成为神经元的细胞数量,可能是对新神经元数量的稳态控制,而新神经元的数量则是整合到齿状gyrus中的新神经元的数量。
摘要 疟疾是一种毁灭性疾病,导致全球发病率和死亡率显著上升。青蒿素类联合疗法是治疗疟疾的一线疗法,但随着这种疗法的耐药性不断上升,开发具有新作用机制的替代抗疟药的必要性也日益凸显。抑制疟原虫蛋白激酶为药物开发提供了一个尚未得到充分探索的机会。PfPK6 已被确定为恶性疟原虫无性血液阶段增殖的必需激酶,但尚未开展药物化学研究以开发抑制剂。在这项研究中,我们报告了利用分裂荧光素酶三杂交技术,使用 KinaseSeeker 检测法确定 Ki8751 是一种 PfPK6 抑制剂(IC 50 = 14 nM)。设计、合成了一系列 79 种 Ki8751 的 1-苯基-3-(4-(喹啉-4-基氧)苯基)脲衍生物,并评估了它们对 PfPK6 的抑制作用和抗疟原虫活性。通过基团效率分析,我们确定了支架上关键基团对抑制 PfPK6 的重要性,这与 II 型抑制剂药效团一致。我们重点介绍了有助于抗疟原虫活性的尾部基团修饰。我们报告了化合物 67 的发现,它是一种有效的 PfPK6 抑制剂(IC 50 = 13 nM),对恶性疟原虫血液阶段(EC 50 = 160 nM)有效,化合物 79 是一种优秀的 PfPK6 抑制剂(IC 50 < 5 nM),对恶性疟原虫血液阶段(EC 50 = 39 nM)和伯氏疟原虫肝脏阶段(EC 50 = 220 nM)具有双阶段抗疟活性。这些结果为将该化学型进一步开发为新型抗疟药和针对 PfPK6 的化学探针奠定了基础,从而可以进一步研究 PfPK6 的功能。
活细胞使用 ATP 和 ADP 的方式与充电电池中的化学物质类似。大多数细胞过程都需要能量,并且由 ATP 水解为 ADP 和磷酸盐(或较少见的 AMP 和焦磷酸盐)直接或间接驱动,从而“耗尽电池电量”。在异养生物中,电池通过分解代谢充电;即氧化有机来源的还原碳化合物,例如葡萄糖。在大多数细胞(尤其是静止细胞)中,葡萄糖的氧化通常通过氧化磷酸化过程完全转化为二氧化碳。在这些条件下,大多数 ATP 合成发生在线粒体内膜上,当通过呼吸链泵出的质子通过复合物 V(ATP 合酶)中的通道流回膜时产生 ATP。有人认为,内共生获得需氧细菌形成线粒体是真核生物发展的关键事件(Lane and Martin 2010)。可用于质子转移的膜表面积的大幅增加(以线粒体内膜的形式)允许大量
蛋白激酶(PK)酶是巨大的超家族的一部分,在各种细胞活化事件中起着重要作用。1 PK酶会催化磷酸基团在酶(苏氨酸,丝氨酸,酪氨酸和组氨酸)中存在于酶的催化位点(也称为ATP结合位点)中,这代表了调节酶活性的关键过程。PK酶的三维结构是由两个域(也称为Lobes)形成的,它们通过固定铰链区域相互关联。这两个结构域之间的界面形成了疏水性CLE构造ATP结合位点(图1)。较小的N端子结构域由B-表格(B 1 - B 5)和一个螺旋(称为C)构成,而第二个C末端域则由多个A螺栓(A D - A I)富集。2 - 4 PK酶共享一些2 - 4 PK酶共享一些
心力衰竭仍然是全球的主要健康负担。尽管在阐明疾病发展背后的分子机制方面取得了巨大进展,但标准疗法却没有以同样的速度发展。多功能信号分子 Ca 2+ /钙调蛋白依赖性蛋白激酶 II (CaMKII) 近年来因其在慢性病环境中的适应不良重塑和心律失常中的核心作用而受到广泛关注。然而,这些基础科学发现尚未转化为人类患者的新疗法。本综述探讨了开发以 CaMKII 信号为靶点的转化疗法以消除慢性病环境中的病理重塑的前景和障碍。讨论了小分子设计方面的努力,以及利用新化合物递送途径和/或遗传方法来影响心脏 CaMKII 信号的替代靶向方法。这些替代策略为克服限制新疗法发展的一些挑战带来了希望。
摘要 生物调控网络是动态、相互交织且复杂的系统,因此很难对其进行研究。虽然转录本和蛋白质的定量测量是研究生物系统状态的关键,但它们并不能告知调控网络的“活跃”状态。考虑到这一事实,需要进行“功能性”蛋白质组学评估来解读活跃的调控过程。磷酸化是一种关键的翻译后修饰,是一种控制蛋白质功能状态的可逆调控机制。高通量蛋白激酶活性分析平台的最新进展使我们能够对复杂生物系统中的蛋白激酶网络进行广泛评估。结合复杂的计算建模技术,这些分析平台提供了告知疾病模型中调控系统活跃状态的数据集,并突出了潜在的药物靶点。总之,系统范围的蛋白激酶活性分析已成为现代分子生物学研究的重要组成部分,并为药物发现提供了一条有希望的途径。
1澳大利亚2109年悉尼麦格理大学医学,卫生与人类科学学院生物医学科学系; john.park4@hdr.mq.edu.au(J.J.P. ); Russell.diefenbach@mq.edu.au(R.J.D.) 2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L. ); Richard.scolyer@health.nsw.gov.au(R.A.S. ); matteo.carlino@sydney.edu.au(M.S.C。) 3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。 : +61-2-9850-2762†两位作者都同样贡献了高级作者。1澳大利亚2109年悉尼麦格理大学医学,卫生与人类科学学院生物医学科学系; john.park4@hdr.mq.edu.au(J.J.P.); Russell.diefenbach@mq.edu.au(R.J.D.)2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L. ); Richard.scolyer@health.nsw.gov.au(R.A.S. ); matteo.carlino@sydney.edu.au(M.S.C。) 3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。 : +61-2-9850-2762†两位作者都同样贡献了高级作者。2澳大利亚黑色素瘤学院,悉尼大学,悉尼,新南威尔士州2065年,澳大利亚; georgina.long@sydney.edu.au(G.V.L.); Richard.scolyer@health.nsw.gov.au(R.A.S.); matteo.carlino@sydney.edu.au(M.S.C。)3澳大利亚2145年悉尼,威斯特米德和布莱克敦医院的医学肿瘤学系; natalie.byrne@sydney.edu.au 4医学肿瘤学系,皇家北岸医院和母校医院,悉尼,新南威尔士州2065年,澳大利亚悉尼5医学与健康学院,悉尼,悉尼,悉尼,2006年,2006年,澳大利亚大学,澳大利亚大学6组织病理学和澳大利亚诊断医院,皇家医院4S.伊迪丝·考恩大学(Edith Cowan University),Joondalup,华盛顿州6027,澳大利亚; e.gray@ecu.edu.au *通信:helen.rizos@mq.edu.au;电话。: +61-2-9850-2762†两位作者都同样贡献了高级作者。
毫无疑问,细胞信号操控是抗癌治疗的关键策略。此外,细胞状态决定药物反应。因此,建立细胞状态和治疗敏感性之间的关系对于癌症疗法的发展至关重要。在个性化医疗时代,使用患者来源的离体细胞模型是将关键研究成果转化为临床应用的一种有前途的方法。在这里,我们专注于细胞对抗癌治疗耐药性的非致癌基因依赖性。使用一组具有各种干细胞和 EMT 相关标志物、不同程度的 ERK1/2 和 AKT 磷酸化以及对抗癌治疗反应的患者肺肿瘤衍生细胞系研究了对 MEK/ERK 和 PI3K/AKT 通路抑制剂(关键细胞功能调节剂)的反应信号相关机制。研究激酶之间的相互作用是我们研究的目标。尽管 MEK/ERK 和 PI3K/AKT 相互作用被认为是细胞系特异性的,其中致癌突变起着决定性作用,但我们证明了所有研究的细胞系中 MEK/ERK 和 PI3K/AKT 信号通路之间存在负反馈回路,无论基因型和表型差异如何。我们的研究表明,各种不同的 ERK 信号抑制剂(selumetinib、trametinib 和 SCH772984)可增加 AKT 磷酸化,相反,AKT 抑制剂(capivasertib、idelalisib 和 AKT 抑制剂 VIII)可增加对照细胞和顺铂治疗细胞中的 ERK 磷酸化。然而,激酶之间的相互作用取决于细胞状态。 ERK 和 AKT 之间的反馈被局部粘连激酶抑制剂 PF573228 减弱,并且在悬浮生长的细胞中也是如此,这表明细胞外接触在调节激酶之间的串扰方面可能发挥着作用。此外,研究表明,MEK/ERK 和 PI3K/AKT 信号通路之间的相互作用可能取决于化疗刺激的强度。该研究强调了抗癌治疗期间细胞的空间位置和治疗强度的重要性。
AKT,蛋白激酶B; CREB,环状腺苷单磷酸反应元件结合蛋白;细胞仪,飞行时间的细胞仪; DMSO,二甲基磺氧化物; ERK,细胞外信号调节激酶; IRF,干扰素调节因素; Jak,Janus激酶; MAPKAPK,有丝分裂原激活的蛋白激酶激活的蛋白激酶; MEK,有丝分裂原激活的蛋白激酶激酶; MTOR,雷帕霉素的哺乳动物靶标; PI3K,磷酸肌醇-3激酶; STAT,信号换能器和转录激活因子; TPO,血小子蛋白; wt,野生型。AKT,蛋白激酶B; CREB,环状腺苷单磷酸反应元件结合蛋白;细胞仪,飞行时间的细胞仪; DMSO,二甲基磺氧化物; ERK,细胞外信号调节激酶; IRF,干扰素调节因素; Jak,Janus激酶; MAPKAPK,有丝分裂原激活的蛋白激酶激活的蛋白激酶; MEK,有丝分裂原激活的蛋白激酶激酶; MTOR,雷帕霉素的哺乳动物靶标; PI3K,磷酸肌醇-3激酶; STAT,信号换能器和转录激活因子; TPO,血小子蛋白; wt,野生型。
多年来,抑制导致癌症的蛋白激酶 (PK) 一直是癌症治疗的重要课题。到目前为止,FDA 批准的药物已经针对了 530 多种 PK 中的近 8%,大约 150 种蛋白激酶抑制剂 (PKI) 已经在临床试验中进行了测试。我们提出了一种基于自然语言处理和机器学习的方法来研究 PK 和癌症之间的关系,预测抑制哪些 PK 可以有效治疗某种癌症。我们的方法根据 PubMed 摘要中的单词和概念邻域将 PK 和癌症表示为具有语义意义的 100 维向量。我们使用 ClinicalTrials.gov 中有关 I-IV 期试验的信息来构建随机森林分类的训练集。我们使用历史数据的结果显示,可以提前数年准确预测 PK 与特定癌症之间的关联。我们的工具可用于预测抑制 PK 对特定癌症的相关性,并支持设计有针对性的临床试验,以发现用于癌症治疗的新型 PKI。