CAS12A是V-A型CRISPR-CAS RNA引导的内切酶。它在特定位点切割了dsDNA,然后在体外反式跨体内激活以非特征ssDNA的裂解。反式活性的免疫功能仍然未知。为了解决这个问题,我们在大肠杆菌中构建了一个CAS12A靶向系统,其中CAS12A裂解了高拷贝靶质粒以释放反式ssDNA裂解活性。然后,我们分析了Cas12a靶向对非目标质粒和ssDNA噬菌体的影响。结果表明,CAS12A有效地消除了目标质粒,但对噬菌体的非目标质粒或鼠疫形成的维持没有影响。此外,有助于靶质粒耗竭的两间隔crispr阵列仍然对非目标质粒或噬菌体没有可检测的影响。一起,数据表明CAS12A的反式ssDNA切割不会导致体内免疫力。
2008 年,我开始研究参与代谢调节的信号分子的作用机制,并发现氨基葡聚糖(一种葡聚糖)促进活性受体复合物的形成。2011 年,由于日本东部大地震,我的研究活动被迫停止。我的导师告诉我 RIKEN 的灾难受害者支持计划。我很幸运地被录取进入了这个项目,并加入了一个专门从事葡聚糖有机合成的实验室,继续我的研究工作 10 个月。在此期间,我与专门从事合成有机化学的化学家进行了多次讨论,我认识到从化学角度了解生物功能的好处。这让我有机会探索我之前一直在研究的分子生物学和细胞生物学方法,并将生物化学视角融入我对葡聚糖内在参与机制的研究中。
CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
摘要目的:分化的人类簇(CD)300A,一种具有免疫受体酪氨酸抑制序列的I型跨膜蛋白,被研究为靶向血液学恶性肿瘤(HMS)的人类天然杀伤(NK)细胞的潜在免疫检查点。方法:我们实施了一个涉及CD300A配体磷脂酰丝氨酸(PS)的刺激系统,暴露于恶性细胞的外表面。此外,我们利用CD300A过表达,CD300A阻止系统和异种移植模型来评估CD300A对NK细胞在体外和体内环境中对HMS的影响。此外,我们探索了患者CD300A与HM进展之间的关联。结果:我们的发现表明PS会阻碍NK细胞的功能。增加的CD300A表达抑制了NK细胞的HM裂解。CD300A的过表达通过损害移植的NK细胞来缩短HM-XENORGARGED小鼠的存活。用抗体阻断PS – CD300A信号显着放大了NK细胞中裂解功能相关蛋白和效应细胞因子的表达,从而增强了裂解HMS的能力。在临床上,CD300A表达的增强与HMS或实体瘤患者的肿瘤内NK细胞的“疲劳”表型相关。结论:这些结果提出了CD300A作为对HMS基于NK细胞的治疗的潜在目标。关键字NK单元格; CD300A;磷脂酰丝氨酸;免疫检查点;血液系统恶性肿瘤
简介鞘氨醇-1-磷酸裂解酶 1 ( SGPL1 ) 的双等位基因功能丧失突变导致鞘氨醇-1-磷酸裂解酶功能不全综合征 (SPLIS),这是一种与非溶酶体鞘脂储存相关的罕见代谢紊乱 (1, 2)。该综合征于 2017 年首次被描述 (3, 4)。迄今为止已报告约 50 例 (5–10)。大多数患者表现出类固醇抵抗性肾病综合征 (SRNS),并迅速发展为终末期肾病。肾病最常与局灶节段性肾小球硬化病理有关,包括侵袭性塌陷型。原发性肾上腺功能不全是第二大常见特征。中枢神经系统和周围神经系统缺陷可能包括发育迟缓或退化,伴有磁共振成像的特征性发现,约一半的病例与其他疾病特征同时发生或独立发生(1, 11)。T 细胞淋巴细胞减少症似乎是一种普遍特征,尽管某种程度的 T 细胞功能通常会持续存在。观察到的严重程度范围很广,一些受影响的个体在子宫内死亡,另一些在婴儿期死亡,而还有一些人在生命的头十年后期出现症状,并在支持性护理下活到成年。尚未建立治疗 SPLIS 的特定疗法。SGPL1 编码鞘氨醇磷酸裂解酶 (SPL),该酶负责鞘脂代谢的最后一步(12)。SPL 催化磷酸化鞘氨醇碱基的不可逆降解,产生两种产物:长链醛和乙醇胺磷酸盐。生物活性鞘脂鞘氨醇-1-磷酸酯 (S1P) 是主要的 SPL 底物。S1P 是 G 蛋白偶联 S1P 受体 (S1PR) 的配体,参与控制肌动蛋白细胞骨架组织、细胞迁移和细胞存活 (13)。S1P 信号传导调节淋巴细胞运输、血管生成、炎症和其他生理过程 (14)。体内 SPL 失活会导致组织 S1P 水平显著升高,并导致上游鞘脂中间体积聚,例如
*均等贡献摘要:RNA引导的核酸酶Cas9已解锁了通过靶向DNA裂解和通过靶向DNA结合来使基因组扰动基因组的强大方法,但是有限的生化数据妨碍了跨不同指导序列的目标序列的定量效果,以跨不同的指导序列进行定量模型。我们提供可伸缩的,基于测序的平台,用于高通量滤波器结合和裂解,然后对90个cas9 cas9核糖核蛋白(RNP)对35,047的35,047 On-Target DNA序列进行62,444个定量结合和裂解测定。我们观察到结合和裂解功效以及特异性在RNP中有很大差异。经典研究的指南通常具有非典型的特异性。围绕目标的序列上下文会显着影响CAS9的速率; CAS9 RNP可能会隔离有助于“校对”能力的非生产性状态中的目标。最后,我们将发现提炼成可解释的生物物理模型,该模型可预测各种目标序列扰动的结合和分裂的变化。
6 德国法兰克福大学心肺研究所 (CPI) 心血管再生研究所。7 德国法兰克福大学医学病毒学研究所。8 德国吕贝克大学实验皮肤病学研究所。9 德国吕贝克大学心脏遗传学研究所。10 法国里尔大学里尔感染和免疫中心、INSERM U1019、CNRS UMR 9017、里尔大学、CHU Lille、里尔巴斯德研究所。11 德国汉堡-埃彭多夫大学医学中心医学微生物学、病毒学和卫生研究所。12 大学。里尔,法国里尔国家健康与医学研究院,里尔中央医院,神经内分泌脑发育和可塑性实验室,里尔神经科学与认知中心,UMR-S 1172,DISTALZ,EGID,里尔,法国。13 德国哥廷根大学医学中心神经病理学研究所。14 德国哥廷根大学生物网络动力学校园研究所。15 德国哥廷根马克斯普朗克实验医学研究所。16 德国吕贝克德国肺脏研究中心 (DZL) 成员北方气道研究中心。17 德国吕贝克大学解剖学研究所。18 瑞士巴塞尔罗氏创新中心罗氏制药研究与早期开发 (pRED)。19 德国汉堡汉堡-埃彭多夫大学医学中心神经病理学研究所。 20 科隆大学遗传学研究所,科隆,德国。21 汉堡-埃彭多夫大学医学中心法医学研究所,汉堡,德国。22 赛诺菲罕见及神经疾病研究中心,弗雷明汉,马萨诸塞州,美国。23 圣地亚哥-德孔波斯特拉大学-卫生研究所 CIMUS 生理学系,圣地亚哥-德孔波斯特拉,西班牙。
有许多因素可能会影响电池的降解行为,例如充电循环的数量或充电率。在这里,我们研究了工作温度对锂离子正极电极中微结构结构降解的影响。为此,微型结构的特征是在不同工作温度下在6C(10分钟)下循环的阴极,即20℃,30°C,30°C,40°C和50°C,每种工作条件扫描扫描电子显微镜(SEM)图像(SEM)图像的crossection Elector Simarcopoy(SEM)图像。5 mn 0。3 CO 0。2 O 2(NMC532)电极,以确定结构描述符,例如全局颗粒孔隙率,裂纹尺寸/长度/宽度/宽度分布,孔隙度以及单个颗粒的特定表面积分布。此外,已经部署了一种立体方法来研究局部粒子孔隙度,该孔隙度是距离粒子中心的距离的函数。结果表明,颗粒孔隙度随循环温度的升高而增加。粒子孔隙度在粒子中心最大,沿粒子半径降低至外部。粒子表面积在四个循环温度的老化条件下相似。
•哺乳动物红细胞(RBC)通常不包含核,因此不能用于DNA提取•在RBC裂解方法中,首先将RBC从血液样本中裂解,然后从血液样本中取出,然后从白细胞中提取DNA(WBC)(WBC)•使用较高的DNA•使用RBC裂解方法提取量的DNA,并允许在RBC裂解方法中提取量,并将其量化用于RBC裂解方法,以使RBC溶解的量为量,并允许在RBC裂解方法中提取量的量。试剂
1 斯科尔科沃科学技术学院生命科学中心,莫斯科 143026,俄罗斯,2 UMR7156 - 分子遗传学、基因组学、微生物学,斯特拉斯堡大学和法国国家科学研究中心 (CNRS),斯特拉斯堡 67000,法国,3 罗格斯新泽西州立大学瓦克斯曼微生物研究所,皮斯卡塔韦 08854,美国,4 白俄罗斯国家科学院物理有机化学研究所生物共轭化学实验室,明斯克 220072,白俄罗斯,5 库尔恰托夫基因组学中心,国家研究中心“库尔恰托夫研究所”,莫斯科 123098,俄罗斯,6 莫斯科罗蒙诺索夫国立大学生物学院,莫斯科 119991,俄罗斯和 7 俄罗斯科学院基因生物学研究所精准基因组编辑和生物医学遗传技术中心科学院,莫斯科 119334,俄罗斯