从单个视图中恢复3D场景几何形状是计算机视觉中的基本问题。虽然经典的深度估计方法仅推断出2.5D场景表示为图像平面,但最新的基于辐射范围的aperach是重建完整的3D代表。然而,这些方法仍然在被占地的区域困难,因为没有视觉观察的几何形状需要(i)周围的语义知识,以及(ii)关于空间上下文的推理。我们提出了Kyn,这是一种单视场景重建的新方法,其原因是语义和空间上下文来预测每个点的密度。我们引入了一个视觉模块模块,以使用细粒度的语义信息丰富点特征。我们通过语言引导的空间注意机制在整个场景中汇总了点表示,以产生意识到3D语义环境的每点密度预测。我们表明,与预测每个3D点的密度相比,Kyn改善了3D形状的恢复。我们在Kitti-360上实现了最新的场景和对象重建结果,并且与先前的工作相比,零弹性概括的改进。项目页面:https://ruili3.github.io/kyn。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。
1。水资源:通过保护和保护水资源来增强水安全。改善综合水资源管理,并通过法规和技术措施确保水质。促进气候硫化的水存储和分配基础设施,例如为井,雨水收集和社区池塘。2。生物多样性:制定和实施综合的生物多样性保护计划,以保护和保护高保护价值领域。通过基于生态系统的适应来修复降级的栖息地,并建立新的保护区以确保受威胁生态系统的生存。改善湿地的健康状况(即Ramsar遗址)充当闸门,牧场,牧场和沙漠和保护水生的多样性和栖息地条件。3。改善针对气候诱发灾难的反应:通过优先考虑灾难挽救基础设施来加强气候诱发的灾难管理能力,
神经元。在这种情况下,兴奋的 V2 神经元向其所有 V1 伙伴广播存在扩展轮廓的可能性。这种分布式反馈信号引入了全局背景,鼓励 V1 神经元基于局部证据完成轮廓
摘要。鉴于对最近的基于视觉模型的大规模多模式培训及其概括能力,因此了解其鲁棒性的程度对于他们的现实世界部署至关重要。在这项工作中,我们的目标是评估当前基于视觉模型的弹性,以应对不同的对象到后环上下文变化。大多数鲁棒性评估方法都引入了合成数据集,以引起对物体特征(观点,比例,颜色)的变化或实际图像上使用的图像转换技术(对抗性变化,常见的损坏),以模拟分离中的变化。最近的作品探索了利用大型语言模式和di!使用模型来产生背景变化。但是,这些方法要么缺乏对要进行的更改或扭曲对象语义的控制,从而使它们不适合任务。另一方面,我们的方法可以诱导各种对象兼容地面变化,同时保留对象的原始语义和对象的真实性。为了实现这一目标,我们利用文本对图像,图像到文本和图像对段的生成能力自动生成广泛的对象到背景的变化。我们通过修改文本提示或优化文本模型的潜伏期和Textual嵌入来引起自然和对抗背景的变化。这使我们能够量化背景上下文在理解深神经网络的鲁棒性和一般性中的作用。我们生产了各种版本的标准视觉数据集(Imagenet,Coco),将多样的和相同的背景纳入图像中,或在背景中引入颜色,纹理和对抗性变化。我们进行了彻底的实验,并对基于视觉模型的鲁棒性与对象之间的背景环境之间的鲁棒性进行了深入的分析。我们的代码和评估基准将在https://github.com/muhammad-huzaifaa/ObjectCompose上找到。
永恒的现在。研究这些民族文学的布罗尼斯拉夫·马林诺夫斯基和多萝西·李发现,西方人的感知比率已被彻底改变。希腊人赋予字母表一种新的表达方式,具有视觉和语义意义。例如,埃及表意文字直接与特定的感性声音和动作相关,具有独特的图形符号。另一方面,希腊字母表的矩阵可以用来翻译外来的影响,就像它们对我们来说一样。我们在我们的文化中自动地来回查看和寻找关系,而不改变原始字母字符的形式和数量(二十四)。它成为第一种将知识从一种文化转移到另一种文化的翻译方式。特罗布里恩德人只对体验一个人的当前本质感兴趣。他感兴趣的是他的纱线、他的石刀、他的船,因为这些物体与原始说话者和特定的感官事件分离。口头传统在今天仍然存在。没有“新”或“旧”船,盛开的山药或腐朽的。没有过去或未来,只有存在的本质,它非常逐渐地存在于书面泛欧洲传统中,并将情感和现在设定为西方的具体知识姿态。特罗布里恩德人与因纽特人一样,直接体验到一种永恒感,即西方的知识姿态。我们永远被“解放”了,所以他永远不会被诸如“谁创造了创造者”之类的问题所困扰。部落词语的共鸣魔力和亲属关系网。英语,事实上大多数西方语言,通过时态暗示现实只能包含在过去、现在和未来的概念中,而这种概念由平面、统一、同质的语言专业化所产生,这相当不协调地暗示着人类能够像神一样,呈现印刷品。口语逐渐衰落。抄写(或手稿)文化
摘要 本研究的目的是研究电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对患有特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视觉感知的影响。本研究的调查是半实验研究,前测和后测采用单组,统计方法为混合方差分析。统计人群是德黑兰复活四所女孩 Maad 小学三年级、四年级、五年级、六年级的全部 216 名学生,其中 10 人通过随机抽样和可用抽样进行测量。为了收集信息,使用了(Susan pickering 工作记忆测试、Visconsin 卡片分类测试和 Frostig 测试)。结果表明,特定学习障碍(阅读、写作、数学)学生与正常学生在工作记忆和空间视知觉等方面存在差异,而电脑游戏(益智游戏 Moument Valley 和模拟游戏 SimCity)对特定学习障碍(阅读、写作、数学)学生的工作记忆和空间视知觉有影响。 关键词:工作记忆 空间视知觉 学习障碍 电脑游戏 引言 特定学习障碍是指一组异质性障碍,其特征是在言语、阅读、写作、答题或数学技能的习得和使用上存在显著差异。学习障碍是一种在使用口头或书面语言方面存在一种或多种显著障碍,在听、想、说、读、写、拼写或进行数学计算的能力上存在缺陷。特定学习障碍是一种影响儿童接收、处理、分析或存储信息能力的问题。这种障碍会使儿童难以阅读、写作、拼写或解决数学问题 [1]。学生特定学习障碍的主要特征包括:自然智力水平、学习成绩低于预期、学习速度慢、认知发展、教育基础重复、学习水平差异、不同学习、课程学习。能力和技能之间存在显著差异,注意力范围狭窄[2]。换句话说,他们尽管智力正常,却无法学习,虽然成长的各个方面与生物成熟度有直接关系,但一般认为生物和非生物因素都可以发挥作用[3]。人类的学习工具随着环境而变化。如果今天的儿童和青少年
自主驾驶是一项复杂而具有挑战性的任务,旨在通过场景和推理来实现安全的运动计划。最近,通过增强的场景理解,几个关键问题,包括缺乏推理,低概括性能和长尾场景,但仍需要戴着几个关键问题,但仍需要进行一些关键问题。在本文中,我们提出了VLP,这是一个新颖的视力 - 语言规划框架,利用语言模式来弥合语言理解与自动驾驶之间的差距。VLP通过加强源内存基础和自动驾驶汽车的上下文理解来增强自主驾驶系统。vlp通过与先前的最佳方法相比,分别在平均L2错误和碰撞率方面,分别在平均L2错误和碰撞率方面实现了35.9%和60.5%的端到端规划表演。此外,在面对新的城市环境时,VLP在挑战性的长尾方案和强大的概括能力方面表现出改善的性能。
研究成果概要(中文):在本研究中,我们旨在开发一种使用 P300 和稳态视觉诱发电位 (SSVEP) 的混合型输入系统,这两种技术在利用脑电图进行字符输入时被广泛使用。该系统发挥了 P300 和 SSVEP 的优势,并弥补了彼此的不足。首先,我们通过视觉刺激呈现建立了一种同时生成方法。接下来,利用呈现方法,我们确认可以通过控制候选字符的呈现时间来有效分离两种不同的脑电图。我们已经证明,我们的原创方法可以实现高速输入。然而,差异程度因对象而异。这是未来需要解决的一个挑战。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。