摘要 —为了将无人机 (UAV) 整合到未来的大规模部署中,一种新的无线通信模式,即蜂窝连接无人机,最近引起了人们的关注。然而,以视距为主的空对地信道以及蜂窝地面基站 (GBS) 的天线方向图给蜂窝连接的无人机通信带来了严重的干扰问题。特别是,复杂的天线方向图和下倾天线的地面反射 (GR) 会为天空中的无人机造成覆盖漏洞和不均匀的覆盖,从而导致底层蜂窝网络连接不可靠。为了克服这些挑战,我们在本文中提出了一种新的蜂窝架构,该架构在现有的地面用户设备 (GUE) 下倾天线之上采用一组额外的面向天空的同信道天线来支持无人机。为了对下倾天线引起的 GR 进行建模,我们提出了一种路径损耗模型,该模型同时考虑了天线辐射模式和配置。接下来,我们制定了一个优化问题,通过调整上倾天线的上倾 (UT) 角度来最大化无人机的最小信号干扰比 (SIR)。由于这是一个 NP 难题,我们提出了一种基于遗传算法 (GA) 的启发式方法来优化这些天线的 UT 角度。在获得最佳 UT 角度后,我们集成了 3GPP Release-10 指定的增强型小区间干扰
ACC 空战司令部 ACM 先进巡航导弹 AEF 空中远征军 AGM 空对地弹药 AFRC 空军预备役部队 ALCM 空射巡航导弹 ANG 空军国民警卫队 AOR 责任区 ASIP 飞机结构完整性计划 BLOS 超视距 BUR 自下而上审查 C2 指挥与控制 C3 指挥、控制与通信 CALCM 常规空射巡航导弹 CAS 近距空中支援 CEM 综合效应弹药 CINC 总司令 CONOPs 作战概念 CONUS 美国本土 CUP 驾驶舱升级计划 DCA 防御性反空战 DEC 数字发动机控制器 DoD 国防部 DT&E 开发测试与评估 EA 电子攻击 EBMM 增强型轰炸机任务管理 ECM 电子对抗 ECMI 电子对抗改进 EHF 极高频 FOL 前沿作战定位 FY 财政年度 GPS 全球定位系统 IOC 初始作战能力 ISR 情报、监视、侦察 JASSM 联合空对地防区外导弹 JDAM 联合直接攻击弹药 JFACC 联合部队空中部队指挥官 JSOW 联合防区外武器 QDR 四年防御评估 LNO 有限核行动 LO 低可观测 LOS 视距 LRAP 远程空中力量评估小组 NCA 国家指挥机构 SA 态势感知
基于模分复用的 FSO 系统中 Hermite-Gaussian 和 Laguerre-Gaussian 模式的分析 ANUSHTHA NIMAVAT 1、AMAN SAH 1、TUSHAR POKHRA 1、ABHISHEK TRIPATHI 2,*、SHILPI GUPTA 1,* 1 电子工程系,萨达尔瓦拉巴伊国家理工学院,苏拉特,古吉拉特邦,印度 2 计算机科学与工程系,Kalasalingam 研究与教育学院,Srivilliputhur,泰米尔纳德邦,印度 自由空间光学 (FSO) 是一种非视距 (NLoS) 技术,可提供无处不在的数字服务,尤其是在频率分配非常紧张且实际上无法容纳所有用户的地区。在本研究中,我们设计了一个模型,该模型传输四个独立模式(HG 00、HG 01、LG 00 和 LG 10),携带伪随机比特序列,这些序列复用到单个自由空间信道中,并在各种衰减和链路长度值的主题下进行研究。我们发现 HG 系列的性能优于 LG 系列,在 600 米链路范围内 18 dB/km 的衰减下,误码率 (BER) 降低了约 7.7%,Q 因子提高了 4%。(2022 年 11 月 2 日收到;2023 年 4 月 7 日接受)关键词:光无线、Hermite-Gaussian、Laguerre-Gaussian、模分复用
在北约成立初期,北约的战略通信尚处于初级阶段,主要由使用国家邮局 (PTT) 电路的一系列点对点链路组成。后来,北约拥有的有限链路使用地面视距微波和对流层散射系统对这些链路进行了补充。20 世纪 60 年代末,很明显需要一种新方法来支持修订后的灵活响应战略和对危机管理的日益重视。这反过来又要求北约国家之间进行更广泛的信息交换,并要求所有国家在和平和危机情况下都能进行协商。此外,需要更好的通信,以使北约最高政治和军事当局能够在各种可能的应急情况下对北约部队进行指挥和控制。因此,1966 年制定了计划,在北约总部和所有北约首都以及三个北约主要指挥官之间建立直接通信。北大西洋理事会从巴黎迁至布鲁塞尔的现总部,为建立专门用于危机管理的综合大楼提供了机会,可以在其中建立一个现代化的通信中心。该中心于 1969 年开始运营。为了提供更好的语音和电报通信,特别是向更远的北约地区,双方同意北约应
1. 导航系统(30 分) 在本题中我们考虑 DME 无线电信标。 [a] DME 这个缩写代表什么?(3 分) 解答:DME 代表测距设备 [b] DME 系统如何工作? 在你的回答中,包括:(12 分) 1. 地面设备和机载设备(如果有)的描述, 解答:地面设备是地面应答器或信标,由天线、接收器、发射器组成。机载设备称为机载询问器。 2. DME 的基本工作原理, 解答:DME 基于测量飞机机载 DME 询问器发射的脉冲与地面 DME 应答器接收回的脉冲(固定时间延迟 50 µ s 后)之间的时间间隔。机载设备计算飞机和 DME 站之间的斜距(视距)。 3. DME 信号特性,解决方案:飞机询问器在 962 至 1213 MHz(UHF)之间的 126 个频率之一上传输脉冲。DME 通道由两个载波频率组成,始终相隔 63 MHz。例如,询问器使用 1025 MHz 载波作为询问脉冲序列,然后响应器使用 962 MHz 载波作为返回脉冲。脉冲采用 cos2 形状,在载波上进行幅度调制,成对相隔 12 µ s。每个脉冲持续 3 µ s(因此一个脉冲中大约有 3000 个载波周期)。4. DM 的不同模式
摘要 — 为了将无人机 (UAV) 融入未来的大规模部署,一种新的无线通信模式,即蜂窝连接无人机,最近引起了人们的关注。然而,以视距为主的空对地信道以及蜂窝地面基站 (GBS) 的天线方向图给蜂窝连接的无人机通信带来了严重的干扰问题。特别是,下倾天线的复杂天线方向图和地面反射 (GR) 会为天空中的无人机造成覆盖漏洞和不均匀的覆盖,从而导致底层蜂窝网络连接不可靠。为了克服这些挑战,在本文中,我们提出了一种新的蜂窝架构,该架构在现有的地面用户设备 (GUE) 下倾天线之上采用一组额外的朝向天空的同信道天线来支持无人机。为了对下倾天线产生的 GR 进行建模,我们提出了一种路径损耗模型,该模型同时考虑了天线辐射方向图和配置。接下来,我们制定了一个优化问题,通过调整上倾天线的上倾 (UT) 角度来最大化无人机的最小信号干扰比 (SIR)。由于这是一个 NP 难题,我们提出了一种基于遗传算法 (GA) 的启发式方法来优化这些天线的 UT 角度。在获得最佳 UT 角度后,我们集成了 3GPP Release-10 指定的增强小区间干扰
摘要 — 太赫兹 (THz) 无线网络有望催化第五代 (B5G) 时代。然而,由于 THz 链路的方向性和视距需求,以及 THz 网络的超密集部署,介质访问控制 (MAC) 层需要面对许多挑战。更详细地说,通过结合能够在复杂且频繁变化的环境中提供“实时”解决方案的人工智能 (AI),重新考虑用户关联和资源分配策略的必要性变得显而易见。此外,为了满足多个 B5G 应用的超可靠性和低延迟需求,需要新颖的移动性管理方法。在此基础上,本文提出了一种整体的 MAC 层方法,该方法可实现智能用户关联和资源分配,以及灵活和自适应的移动性管理,同时通过最小化阻塞来最大限度地提高系统的可靠性。更详细地,记录了一种快速集中的联合用户关联、无线电资源分配和阻塞避免,该方法通过一种新颖的元启发式机器学习框架实现,可最大限度地提高 THz 网络性能,同时将关联延迟最小化大约三个数量级。为了在接入点 (AP) 覆盖范围内支持移动性和避免阻塞,讨论了一种用于波束选择的深度强化学习 (DRL) 方法。最后,为了支持相邻 AP 覆盖区域之间的用户移动性,报告了一种基于 AI 辅助快速信道预测的主动切换机制。
基于经验的演变 20 世纪 20 年代,比利·米切尔将军击沉了一艘目标战舰,从而展示了舰艇面对空袭的脆弱性,为海军带来了新的威胁。早期的海军防空依靠 20 毫米、40 毫米、3 英寸和 5 英寸炮等防空炮火进行大规模、不协调的射击。在那些日子里,战场范围只延伸到视距内,通常不到 15 英里。防空由一系列近距离局部防空战组成,严格来说是出于自卫。舰艇依靠目视观测和原始、不精确的声音通信。第二次世界大战期间,精确空中轰炸和鱼雷轰炸的后续发展带来了严重威胁,需要防御能力。在海军舰艇上部署空中搜索雷达极大地改变了防空环境。远程侦察敌人使得舰载战斗机能够在距离目标特遣部队数英里的地方消灭来袭的袭击。早期侦察远距离袭击为防御舰艇提供了关键的反应时间,以便在受到攻击的友军部队之间启动有限的火力协调。当神风特攻队于 1944 年作为第一种真正的制导导弹出现时,早期侦察和预警对于有效的防空至关重要。战术发展迅速,包括紧密聚集的防御舰艇编队和用于预警的警戒舰。虽然以目前的标准来看还很原始,但有效、协调的概念
E. 操作规则 1.遥控飞行员指挥 a. 术语 b.遥控飞行员指挥 c. 飞行员认证要求 d. 遥控飞行员指挥的紧急权力 2.视距避让和能见度要求 a.视线 b.视觉观察员 i.视觉观察员的定义 ii.使用视觉观察员时的操作要求 iii.可选择使用视觉观察员 iv.无需飞行员认证或视觉观察员培训 c. 额外的能见度要求 i. 白天操作 ii.天气/能见度最低值 iii.让行权 d.额外技术/显眼性要求 i. ADS-B、应答器和 TCAS ii.无线电设备 iii.照明 iv.显眼性 3.遏制和失去正面控制 a.密闭作业区域边界 i. 水平边界和移动车辆 ii.垂直边界(最大高度) b. 减轻失去正面控制的风险 i.最大速度 ii.操作多架无人机 iii.微型 UAS iv.飞越人群 v. 飞行前简报 vi.飞行前对操作区域进行评估并确保飞机不会造成不当危险 1.飞行前对操作环境进行评估 2.失去控制时可能造成的不当危险 vii.自动化 viii.其他设备 1.地理围栏
ACAS 机载防撞系统 AMC 公认的合规方法 CAA 民航局 CAP722 民航出版物 722 CBRN 化学、生物、放射和核 COA 豁免或授权证书 CR 通信中继 E/O 电光 EASA 欧洲航空安全局 EIRP 等效全向辐射功率 ELOS 等效安全等级 ERP 等效辐射功率 EUROCAE 欧洲民航设备组织 FAA 联邦航空管理局 FINNARP 芬兰南极研究计划 FMI 芬兰气象研究所 FPV 第一人称视角 FSS 固定卫星服务 FTS 飞行终止系统 GCS 地面控制站 GPS 全球定位系统 GTK 芬兰地质调查局 HALE 高空长航时 HSDPA 高速下行分组接入 ICAO 国际民航组织 IMU 惯性测量单元 LALE 低空长航时 LOS 视距 MALE 中空长航时 MASPS 最低航空系统性能标准 Metla 芬兰森林研究所 MI 气象仪器 MRU 移动接收装置 MSS 移动卫星服务 NATO 北大西洋公约组织 R/C 遥控 RS 遥感 RVT 远程视频终端 SAC 特殊适航证 SAR 合成孔径雷达 STANAG 标准化协议 STUK 芬兰核与辐射安全局 SUMO 小型无人气象观测机 SYK