摘要。本文介绍了 MCTS-BN,它是蒙特卡洛树搜索 (MCTS) 算法的一种改编,用于贝叶斯网络 (BN) 的结构学习。MCTS 最初设计用于博弈树探索,现已重新用于解决学习 BN 结构的挑战,方法是探索贝叶斯网络中潜在祖先顺序的搜索空间。然后,它采用爬山法 (HC) 从每个顺序中得出贝叶斯网络结构。在大型 BN 中,变量顺序的搜索空间变得巨大,在推出阶段使用完全随机的顺序通常不可靠且不切实际。我们采用半随机方法来应对这一挑战,方法是结合从其他启发式搜索算法(如贪婪等价搜索 (GES)、PC 或 HC 本身)获得的变量顺序。这种混合策略减轻了计算负担并提高了推出过程的可靠性。实验评估证明了 MCTS-BN 在改进传统结构学习算法生成的 BN 方面的有效性,即使在基础算法阶数次优的情况下也表现出稳健的性能,并且在提供有利阶数时超越了黄金标准。
摘要 — 电池管理系统 (BMS) 依赖于经验模型,即等效电路模型,这得益于其数学简单性和低计算负担。然而,经验模型需要经过大量的校准工作,而且它们缺乏跨化学性质的可转移性。此外,无法预测电化学内部状态和考虑退化动态通常会导致电池系统可用性不佳,可能导致不准确的健康状态 (SOH) 估计随时间而变化。一种能够观察和控制电池系统内部变量的先进 BMS 设计对于克服这些限制至关重要,从而为快速增长的能源市场提供持久、更安全且具有成本效益的电池系统。基于物理的电池模型已被视为适合集成到下一代 BMS 中的建模框架之一。在基于模型的估计中,可用的输入/输出传感器信息(例如电流、电压和温度)与电池动态的数学表示一起用于估计内部状态。本教程的目的是回顾基于物理的电池模型的实施挑战,并概述最新的研究趋势,重点关注面向先进 BMS 的基于物理的电池模型硬件实现的数值算法和观察器设计。
方案(Schleimer等,2003; Roberts等,2004)是正向方案,可保证以原始序列以它们出现的顺序对K -Mers进行采样。这些属性特别有吸引力,因为它们保证没有任何区域未卸下。这些方案的目的是减少下游方法的计算负担,同时维护窗户保证,大多数新方案的主要目标是最大程度地减少密度,即采样k -mers的预期比例。在过去的十年中,已经提出了许多新方案,其密度明显低于原始随机最小化方案。For example, there are schemes based on hitting sets (Orenstein et al., 2016; Marçais et al., 2017, 2018; DeBlasio et al., 2019; Ekim et al., 2020; Pellow et al., 2023; Golan et al., 2024), schemes that focus on sampling positions rather than k -mers (Loukides and Pissis, 2021; Loukides等,2023),在t -mers(t 尽管有所有这些改进,但这些方案与达到最低密度有多近。 窗口保证给出的密度的微不足道的下限为1尽管有所有这些改进,但这些方案与达到最低密度有多近。窗口保证给出的密度的微不足道的下限为1
这些微小的生物可以利用其软体体系来促进机车的促进,[5]持续记忆,[6]和计算。[7,8]这种模式在更大的生物中也存在:通过利用其肌肉骨骼系统的机制,脊椎动物也可以实现一种体力智力[9,10],从而将认知资源释放出来,以提高认知资源来获得高级理性。[1,11]软机器人技术的建立是出于设计能够类似地利用这种身体上的物理智力来简化其环境相互作用并减轻生活中的计算负担的明确目的。[12]然而,尽管软物质工程在生物启发的功能中取得了很大进步的发展,但这些材料的整体转移到具有真正生物启发的自主权的软机器人中,仍然在很大程度上未实现。在此障碍的核心是软机器人控制。软机器人的Chie量集中在功能性,可变形材料的制造[13,14]和致动[15,16] [17-19],[17-19]在每个区域中驱动了实质性的创新。相比之下,软机器人感知的发展较少,[20,21]学习,[22,23]和对照。[24 - 26]
摘要 - 电网中光伏(PV)系统的整合在峰值功率进料过程中引起拥塞。PV系统中的电池存储会增加自我消费,以实现消费者的好处。然而,随着传统的自我消费(MSC)控制电池调度的控制,网格拥塞的问题未解决。电池往往会在一天的早期充满电,并且峰值功率仍然易于网格。这还增加了由于高电荷(SOC)水平的停留时间增加而增加的电池降解。为了解决此问题,此工作使用模型预测控制(MPC)在PV系统中进行调度,并使用电池存储,以实现最大程度地减少电池降解,网格拥塞,同时最大化自我消耗的多个目标。为了证明改进,此工作比较了用于电池调度的MPC和MSC方案的性能。通过绩效指数(例如自消耗率,峰值功率降低和电池容量逐渐消失)来量化改进。对预测误差下MPC性能的计算负担和最大恶化的分析也进行了。得出的结论是,与MSC相比,MPC在PV系统中实现了相似的自我消费,同时还可以减少电网充血和电池降解。
迭代采样过程的计算负担仍然是基于扩散的低光图像增强(LLIE)的主要挑战。当前的加速方法,无论是基于培训还是无训练,通常都会导致绩效显着降解,突出了性能和效率之间的权衡。在本文中,我们确定了导致降解的两个主要因素:拟合错误和推理差距。我们的关键见解是,可以通过线性推断不正确的分数函数来减轻拟合误差,而可以通过将高斯流量转移到反射率感知的残余空间来减少推理差距。基于上述见解,我们设计了反射性感知的轨迹限制(RATR)模块,这是一个简单而有效的模块,可使用图像的反射率组成来完善教师轨迹。之后,我们使用Di stalled T Rajectory(Reddit)引入了flectance-flectance-flectance defusion,这是一个为Llie量身定制的效率且灵活的蒸馏框架。我们的框架可以在仅2个步骤中以冗余步骤的冗余步骤实现可比性的性能,同时建立8或4个步骤的新最先进的结果(SOTA)结果。对10个基准数据集的全面实验评估验证了我们方法的有效性,始终超过现有的SOTA方法。
摘要 - 本文研究一种储能共享模型,该模型由多个建筑物合作用于利用现场可再生用途和电网价格套利。为了最大程度地利用经济利益,我们共同考虑通过联盟游戏组成的ES规模,运营和成本分配。特别是,我们研究了基于核仁的公平前成本分配,该成本分配是通过最小化所有参与者的最小不满来解决公平性的。为了克服由隐式特征功能引起的指数计算负担,我们采用约束生成技术来逐渐通过利用稀疏的问题结构来逐步接近唯一的核仁。我们通过案例研究证明了该方法的公平性和计算效率,这些案例研究未通过现有的Shapley方法或比例方法提供。特别是,仅需要一小部分特征功能(对于20座建筑物来说少于1%)才能实现成本分配与沙普利方法所需的指数信息。尽管对比例方法的计算略有增加,但是在某些情况下,该方法可以确保公平性,而后者在某些情况下会失败。此外,我们证明了通过各个ES(IES)模型的ES共享模型增强了建筑物和社区经济的利益。因此,ES的总体值1大大提高(约1.83次)。
结构变异(SV)是重大的基因组改变,在包括癌症在内的遗传多样性,进化和各种疾病中起着至关重要的作用。检测SVS的传统方法通常在计算效率,准确性和可扩展性方面面临挑战,尤其是在处理大型基因组数据时。近年来,图形处理单元(GPU)和机器学习(ML)的出现已经开发了解决这些挑战的新途径。本文探讨了GPU加速度和ML技术的整合,以增强结构变体的检测和分析。我们提出了一个全面的框架,该框架利用深度学习模型(用于在GPU上并行处理)以高精度实现实时SV检测。我们的方法不仅减轻了计算负担,而且还提高了与常规方法相比,SV检测的敏感性和特异性。通过在各种基因组数据集上进行广泛的基准测试,我们在速度,准确性和可扩展性方面证明了我们的GPU加速ML框架的出色性能。这些发现强调了将GPU和ML技术相结合以革新基因组研究的潜力,并为在临床和研究环境中更有效,更精确的结构变体分析铺平道路。
摘要 - 图像搜索是一个热门话题,它在各种物联网(IoT)应用程序(例如疾病诊断,面部识别和指纹识别)中发挥了重要作用。同时,图像的扩散使图像所有者将图像外包到云中,以减轻本地存储和计算负担。因此,图像搜索没有任何对云的隐私范围的搜索,已引起了很大的关注,并在文献中广泛探讨了。过去几年已经提出了许多基于Bloom滤波器的方案,但是大多数方案都遭受了高存储开销,较低的假正率,甚至揭露了Bloom滤波器中的值。为了解决这些挑战,在本文中,我们首先设计了一个合并和重复的不可区分的布鲁姆过滤器(MRIBF)索引结构,该结构可以减少开销的存储空间并以较低的假阳性速率实现自适应安全性。然后,使用MRIBF,我们提出了一个安全有效的基于BLOOM过滤器搜索方案(BFIS),以实现比线性更快且更准确的搜索。详细的理论分析表明,我们的方案确实是准确且安全的。广泛的实验表明,我们的计划确实是有效且可行的。
运动想象脑机接口 (MI-BCI) 已成为神经康复领域的一项很有前途的技术。然而,目前的多类 MI-BCI 的性能和计算复杂度尚未得到充分优化,而且很少研究对运动想象任务中个体差异的直观解释。在本文中,首先将精心设计的多尺度时频分割方案应用于多通道脑电图记录以获得时频片段 (TFS)。然后,利用基于特定包装器特征选择规则的 TFS 选择来确定最佳 TFS。接下来,使用发散框架中实现的一对一 (OvO)-divCSP 来提取判别特征。最后,利用一对其余 (OvR)-SVM 根据选定的多类 MI 特征预测类标签。实验结果表明,我们的方法在两个公开的多类 MI 数据集上取得了优异的性能,平均准确率为 80.00%,平均 kappa 为 0.73。同时,提出的 TFS 选择方法可以显著减轻计算负担,同时准确率几乎没有降低,证明了实时多类 MI-BCI 的可行性。此外,运动想象时频反应图 (MI-TFRM) 是可视化的,有助于分析和解释不同受试者之间的表现差异。