摘要 — 电池管理系统 (BMS) 依赖于经验模型,即等效电路模型,这得益于其数学简单性和低计算负担。然而,经验模型需要经过大量的校准工作,而且它们缺乏跨化学性质的可转移性。此外,无法预测电化学内部状态和考虑退化动态通常会导致电池系统可用性不佳,可能导致不准确的健康状态 (SOH) 估计随时间而变化。一种能够观察和控制电池系统内部变量的先进 BMS 设计对于克服这些限制至关重要,从而为快速增长的能源市场提供持久、更安全且具有成本效益的电池系统。基于物理的电池模型已被视为适合集成到下一代 BMS 中的建模框架之一。在基于模型的估计中,可用的输入/输出传感器信息(例如电流、电压和温度)与电池动态的数学表示一起用于估计内部状态。本教程的目的是回顾基于物理的电池模型的实施挑战,并概述最新的研究趋势,重点关注面向先进 BMS 的基于物理的电池模型硬件实现的数值算法和观察器设计。
主要关键词