薄膜硅锂(基于TFLN)的电气调节器由于其宽带宽度,高消光比和低光学损失,因此在宽带光学通信中具有广泛的应用。然而,与基于硅和磷酸二磷脂(INP)的同行相比,TFLN表现出较低的调制效率。同时达到低驾驶电压和广泛的调节带宽会带来重大挑战。为了解决此限制,本文提出了进入设备的透明导电氧化物,导致超高调制的效率为1.02 V cm。制造的复合电极不仅达到了高调制的效率,而且还具有高的电磁带宽,正如108 GHz时的3 dB rol-O摄取所证明的,PAM-4信号在224 GBIT S-1处得到了传播。制造的设备为低成本,高性能调节器提供了新颖的解决方案,从而促进了基于TFLN的多通道光学发射器芯片的缩小尺寸。
摘要:材料平台的进步表现出强大而鲁棒的电形效应对于在开发具有低功耗的高效光电组件中,对于现代光学通信系统而言,具有低功率的高效光电组件至关重要。在这项工作中,我们研究了通过化学溶液沉积技术生长的薄膜铅锆钛酸钛酸钛酸钛酸钛酸盐(PZT)底物,这是片上等离子电元电磁调节剂的潜在平台。使用15μm长的电彩力定向调节器实现高调制深度(> 40%)。观察到约200 kHz的调制频率响应中的异常截止,并在可能的重新定向效应方面进一步研究。第二次谐波产生信号受到外部应用的电场的影响,这表明域的重新定位效应可以造成观察到的异常频率响应。
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
Chiral kagome superconductivity modulations with residual Fermi arcs in KV 3 Sb 5 and CsV 3 Sb 5 Authors: Hanbin Deng 1 *, Hailang Qin 2 *, Guowei Liu 1 *, Tianyu Yang 1 *, Ruiqing Fu 3 *, Zhongyi Zhang 4 , Xianxin Wu 3 †, Zhiwei Wang 5,6 †,Youguo Shi 7,8,9†,Jinjin Liu 5,6,Hongxiong Liu 7,8,Xiao-Yu Yan 1,Wei 1,Wei 1,Xitong Xu 10,Yuanyuan Zhao 2,Yuanyuan Zhao 2,Mingsheng Yi 11,Gang Yi 11,Gang Xu 11,Gang Xu 11,Hendrik Hohmann 12,Hendrik Hohmann 12,hendrik Hohmann 12,sofie castro castro castrun decto and dectoholbükk。 Sen Zhou 3,Guoqing Chang 15,Yugui Yao 5,6,Qianghua Wang 16,Zurab Guguchia 17,Titus Neupert 13,Ronny Thomale 12,Mark H. Fischer 13,Jia-Xin Yin Yin 1,2†物理学:1个物理学:1个科学和科学技术系,Shengong,Shengong。2广东港量子科学中心大湾大湾地区(广东),中国深圳。 3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。 4香港科学技术大学物理系,中国香港清水湾。2广东港量子科学中心大湾大湾地区(广东),中国深圳。3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。4香港科学技术大学物理系,中国香港清水湾。4香港科学技术大学物理系,中国香港清水湾。
连续可变量子密钥与离散调制具有可能使用广泛可用的光学电源和现有的电信基础来提供信息理论安全性的潜力。尽管其实施比基于高斯调制的协议要简单,但证明其针对连贯攻击的有限尺寸安全性带来了挑战。在这项工作中,我们证明了有限尺寸的安全性,以针对涉及四个相干状态和杂化检测的离散调制量子键分配协议的共同攻击。要这样做,与大多数现有方案相反,我们首先将所有连续变量分解为协议期间的所有连续变量。这使我们可以使用熵累积定理,该工具以前已在离散变量的设置中使用,以结构有限尺寸的安全性证明。然后,我们通过半准编程计算相应的有限键速率,并在光子数截止下计算。我们的分析提供了0范围内的渐近率。1-10 - 4位每回合,用于数百公里的差异,而在有限的情况下,对于实际的参数,我们在n〜10 11回合和几十公里的距离之后获得了10 GBITS的秘密钥匙。
收养细胞疗法正成为肿瘤免疫疗法的基石。它依赖于相对长的(> 2周)以肿瘤浸润细胞形式的T细胞的离体扩张,或者通过异源信号蛋白(例如嵌合抗原受体)的表达而修饰的大量细胞。然而,对于在系统水平下T细胞的发育轨迹的了解相对较少,或者是否可以操纵控制这些轨迹的途径以获得临床优势。使用T细胞的大量RNA-seq分析在17天的时间内扩展并搁置,我们产生了一种资源,揭示了基因表达如何随着细胞在激活和体外扩张过程中通过不同细胞状态的过渡而变化。通过将此资源与已发表的单细胞RNA-seq数据整合在一起,我们确定了AP1转录因子(TF)家族FOSL1的成员,该成员fosl1,将CD8 + T细胞用于效应子/杀伤表型。值得注意的是,T细胞扩张期间的FOSL1过表达产生了“超级参与者”的T细胞,这些T细胞由它们的基因表达特征和增强的癌症杀伤能力证明。这为TF在体内扩张期间通过TF修饰的理性工程建立了原理证明,从而提供了改善养养T细胞疗法的途径。
摘要:最近的 fMRI 到图像方法主要侧重于将 fMRI 信号与预训练扩散模型的特定条件相关联。这些方法虽然可以生成高质量的图像,但仅捕获了 fMRI 信号中复杂信息的有限方面,并且对图像创建几乎没有细节控制。相比之下,本文提出使用 fMRI 信号直接调节扩散模型的生成过程。我们的方法 NeuroPictor 将 fMRI 到图像的过程分为三个步骤:i)fMRI 校准编码,用于处理共享潜在空间的多人预训练,以最大限度地减少个体差异并为后续的多受试者训练提供支持;ii)fMRI 到图像多受试者预训练,感知学习以指导不同个体之间具有高级和低级条件的扩散模型;iii)fMRI 到图像单人细化,与步骤类似