摘要 - 为了在现实世界中取得成功,机器人必须应对与训练过程中看到的情况不同的情况。我们通过利用以前学过的行为的多样化的曲目来研究部署期间在部署过程中适应这种新型情况的问题。我们的方法,强大的自主调制(ROAM),基于预先训练的行为的感知价值,以选择和适应手头情况的情况。至关重要的是,这种适应过程全部发生在测试时间的单个情节中,而无需任何人类监督。我们证明,漫游使机器人能够迅速适应模拟和真正的GO1四倍的动力学变化,甚至成功地以鞋底上的滚筒溜冰鞋成功地前进。通过有效选择和适应相关行为,我们的方法与现有方法相比,与现有方法相比,与现有方法相比,与现有方法相比,适应于2倍以上。
通过α功率调节感觉神经元兴奋性。未能调节α功率并抑制分心信息的老年人在注意力和工作记忆任务中的报道。鉴于编码过程中的α功率可以预测随后的内存性能,因此异常振荡调制可能在与年龄相关的记忆缺陷中起作用。但是,在分散注意力时,在编码目标时,记忆性能或α调制是否存在与年龄相关的差异。在这里,我们表明,年龄较大的成年人和年轻人都能够编码与干扰因素配对的目标,并且在编码预测识别成功过程中的α功率调制水平。即使老年人表现出更高的分心迹象,但这并没有损害其目标信息的情节记忆。另外,我们证明,老年人仅通过增强目标处理和抑制分散处理过程而在高度分散注意力期间仅调节α功率。这些结果表明,年轻人和老年人都能够成功采用相同的抑制控制机制,但是当分散注意力最小的时候,老年人都无法呼吁这些机制。这项研究的发现使我们对整个生命周期编码的记忆的机制有了更多的了解。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年2月1日发布。 https://doi.org/10.1101/2025.02.01.636062 doi:Biorxiv Preprint
本文档是公认的手稿版本的已发表作品,该作品以ACS Nano的最终形式出现,版权所有©2022 American Chemical Society,在出版商的同行评审和技术编辑之后。要访问最终编辑和发布的工作,请参见https://doi.org/10.1021/acsnano.2c06682。
摘要 本文介绍了一种负载调制平衡放大器 (LMBA) 的设计方法,重点是减轻 AMPM 失真。通过引入二次谐波控制作为设计自由度,可以选择复杂的负载轨迹来补偿设备中的 AMPM 非线性,而不会显著影响效率。数学推导伴随着基于闭式方程的设计程序,以仅基于负载牵引数据来制造 LMBA。通过对三种不同设计进行测量比较来验证该理论,这些设计在伪 RF 输入 Doherty 类 LMBA 配置中以 2.4 GHz 运行,具有 J 类、-B 类和 -J* 类主 PA。J 类原型的性能优于其他设计,在峰值输出功率和 6 dB 回退时分别具有 54% 和 49% 的漏极效率,并且在此功率范围内只有 4 度的 AM-PM。当使用 10 MHz、8.6 dB PAPR LTE 信号驱动时,无需数字预失真,即可实现 40.5% 的平均效率和优于 − 40.5 dBc 的 ACLR。
1微电器设备与综合技术的关键实验室,中国科学院微型电子学院,中国北京100029; duyong@ime.ac.cn(Y.D.); xubuqing@ime.ac.cn(b.x。); kongzhenzhen@ime.ac.cn(Z.K.); yujiahan@ime.ac.cn(J.Y。); zhaoxuewei@ime.ac.cn(X.Z.); linhongxiao@ime.ac.cn(H.L.); sujiale@ime.ac.cn(J.S.); hanjianghao@ime.ac.cn(J.H.); liujinbiao@ime.ac.cn(J.L.); dongyan2019@ime.ac.cn(y.d。); wangwenwu@ime.ac.cn(W.W.)2中国科学院微型电子学院,中国100049,中国3研究与发展中心,古旺湾地区综合电路和系统研究所,综合电路和系统研究院liben@giics.com.cn 4 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中国5电子设计系,瑞典中部,瑞典中部,霍尔姆加坦10,85170 Sundsvall,瑞典 *通信 *通信); miaoyuanhao@ime.ac.cn(Y.M.); rad@ime.ac.cn(H.H.R.);电话。: +86-010-8299-5793(G.W.)
摘要1类I型CRISPR-CAS系统代表了本质上最丰富,最多样化的CRISPR系统。然而,它们在通用基因组编辑中的应用受到了在异源宿主中引入特定类别的多组分效应子进行功能的困难。在这里,我们建立了一个可转让的级联系统,该系统可以通过共轭在臭名昭著的顽固性和多样化的铜绿假单胞菌基因组中稳定的整合和表达。在不同的遗传背景下,转移的级联反应显示出比CAS9系统更高的DNA干扰活性和更高的编辑能力,包括以效率和简单性去除大型(21-kb)集成盒。在基因型中启用了一个高级λred-i-f系统,具有较差的同源重组能力,缺乏序列信息的临床分离株以及含有抗Crispr元素ACR的细胞。最后,通过同时引入级联反应和微型千里阵列,以单步中表达所需的crrna,开发了一个“多合一” I- F级别介导的CRISPRI平台,用于转录调制。这项研究提供了一个框架,用于扩展多种I型级联反应,用于广泛,异源基因组编辑和在非模型病原体分离株中的编辑技术的建立。引言定期间隔短的短质体重复序列(CRISPR)和CRISPR相关蛋白(CAS)构成原核生物中的适应性免疫系统,该系统通过RNA引导的核酸破坏来抵御异物元素(1,2)。基因组编辑和治疗应用已集中在2类CRISPR-CAS系统上,因为它们对单个多功能效应子(例如Cas9和cas12a)对DNA干扰(3,4)。但是,2类系统仅代表了在原核生物中自然编码的CRISPR-CAS系统的〜10%(5)。他们在编辑细菌基因组中的应用经常受到较差的转化,细胞毒性和对物种特异性优化的优化的要求,对大型CAS9/CAS9/CAS12A蛋白的异源表达(6-8)。与真核生物中工具的快速上升和扩展相反,到目前为止,基于CAS9/CAS12A的基因组编辑仅在几种模型细菌菌株中才能成功建立。缺乏一种基于CRISPR的主要编辑策略,很容易适用于各种细菌物种。非常明显,将近50%的细菌和90%的古细菌基因组编码本地CRISPR-CAS系统和90%的自然存在的CRISPR-CAS系统属于1类系统,这些系统属于1级系统,这些系统通过称为级联的多组分效应物复合物(CRISPR-PR-PR-PRAPER-COMPAIDE COMPLECT)(CRISPR-PRAPER-SAPERAPIDECTER complace for Attiviral Sevipers of Viviral Defersication)(9,10)(9,10)。尽管这些效应子的复杂性在某种程度上阻碍了它们在真核生物中的广泛应用,但它们的流行率和多样性,尤其是1类I型系统,占所有CRISPR-CAS系统的50%,占具有七个子类型的所有CRISPR-CAS系统(即i-a至i-f plus i-u)为细菌和古细菌中基于内源性CRISPR-CAS基于内源性CRISPR-CAS的遗传开发开辟了新的途径(11)。该方法通过简单地输送一个经常在单个质粒中组装的编程的微型CRISPR阵列和所需的维修供体来运行,并将其用于原核生物细胞,从而以简单性和效率实现基因组编辑。采用该策略,编辑了几种遗传性顽固生物,例如工业细菌梭状芽胞杆菌casteurianum atcc6013(I型I-B)(12)(12),抗多药耐药性pseudomonas aeruginosa aeruginosa Genotype pa154197(I型I-f)(I型I-F)(13)和
薄膜硅锂(基于TFLN)的电气调节器由于其宽带宽度,高消光比和低光学损失,因此在宽带光学通信中具有广泛的应用。然而,与基于硅和磷酸二磷脂(INP)的同行相比,TFLN表现出较低的调制效率。同时达到低驾驶电压和广泛的调节带宽会带来重大挑战。为了解决此限制,本文提出了进入设备的透明导电氧化物,导致超高调制的效率为1.02 V cm。制造的复合电极不仅达到了高调制的效率,而且还具有高的电磁带宽,正如108 GHz时的3 dB rol-O摄取所证明的,PAM-4信号在224 GBIT S-1处得到了传播。制造的设备为低成本,高性能调节器提供了新颖的解决方案,从而促进了基于TFLN的多通道光学发射器芯片的缩小尺寸。
bi 1 -x ba x feo 3(bbfo,x = 0,0.03,0.1)薄膜是通过脉冲激光沉积在srruo 3-固定srtio 3(001)底物上外上脚部生长的。随着BA含量的增加,BBFO薄膜显示出显着降低的泄漏电流,但抑制了铁电偏振。X射线衍射互惠空间映射和拉曼光谱表明在BBFO薄膜中,从菱形的类似隆隆巴德中的到四方样相的结构进化。光吸收和光电子光谱测量表明,BBFO薄膜中能量带结构的调节。BBFO薄膜带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。 已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。 受体掺杂存在额外的氧气空位应该为传导行为做出贡献。 这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。带有A位点BA受体掺杂,表现出光切的蓝移膜和工作函数的增加。已调制了BBFO薄膜的传导和价带的能量位置,而费米水平向下转移到了禁带的中心,但是受体掺杂的BFO薄膜仍显示N型传导。受体掺杂存在额外的氧气空位应该为传导行为做出贡献。这项研究提供了一种操纵功能特性的方法,并洞悉BFO薄膜中BA掺杂物理学的洞察力。
在量子密钥分发 (QKD) 中,两个远程方旨在根据量子力学定律建立信息理论秘密密钥。与常用的传统加密方案相比,QKD 是前向安全的,即生成时安全的密钥无法在未来重建,并且不依赖于对窃听者的计算能力或解决复杂数学问题的有效算法的假设。因此,即使在可扩展量子计算机存在的情况下,QKD 也可以进行秘密通信。要执行量子密钥分发,需要物理实现、描述双方必须执行的步骤的协议和安全证明 - 这意味着在给定实际实现模型和一些合理假设的情况下找到安全密钥速率的下限。长期以来,这些假设之一是通信方可以交换无限长的密钥。当然,这只是理想化,在现实世界中并不成立。在本文中,我们分析了有限尺寸范围内通用离散调制连续变量量子密钥分发 (DM CV-QKD) 协议的安全性。我们使用 Renner 的有限尺寸安全性证明框架 [85] 来建立可组合安全性以抵御 iid 集体攻击。CV-QKD 协议依赖于测量连续量,例如存在于无限维希尔伯特空间中的量子态的位置和动量。因此,DM CV-QKD 协议有限尺寸安全性证明的主要挑战之一是正确处理这些无限维系统。我们引入并证明了一种新的抗噪能量测试定理,该定理有助于将交换信号的权重限制在有限维截止空间之外,并应用降维方法 [105] 严格考虑该截止对安全密钥速率的影响。虽然这种能量测试是我们安全性论证的一个组成部分,但我们强调,它本身就是一个有趣的结果,可能在量子计算和通信的各种情况下都很有用。在将 Renner 的框架扩展到无限维边信息之后,我们最终应用了数值安全性证明框架 [19, 110] 来计算不同理论上有趣且实际相关的场景的安全密钥率的严格下限。本安全性证明的灵活结构允许根据实验者和用户的需求进行调整。例如,与许多现有的证明技术相比,我们的方法可以将后选择纳入