摘要 - 由于他们的第一个演示,基于石墨烯的硅波导调制器已演变为在未来的光学互连中采用非常有吸引力的设备。在本文中,我们首先回顾了基于石墨烯的强度调节剂的最先进。考虑了两种重要的设备配置:一种使用单个石墨烯层,通过硅波导本身偏置,另一个使用两个石墨烯层的电容堆栈,可以集成在被动硅和氮化硅波导中。我们还讨论了我们最近在CMOS试点线上完全制造此类设备的工作。在下一节中,我们回顾基于石墨烯的相位调节器。再次,我们比较了两种类型的调节器,涉及单个或双石墨烯层堆栈。此外,我们还提出了新的结果,将集成在标准带状波导上的调节器与集成在插槽波导上的调节器进行比较,从而使光场更加限制。最后,我们基于模拟结果总结了我们的发现以及现场和前景。索引项 - 准烯,调节剂,硅光子学。
摘要 - 由于他们的第一个演示,基于石墨烯的硅波导调制器已演变为在未来的光学互连中采用非常有吸引力的设备。在本文中,我们首先回顾了基于石墨烯的强度调节剂的最先进。考虑了两种重要的设备配置:一种使用单个石墨烯层,通过硅波导本身偏置,另一个使用两个石墨烯层的电容堆栈,可以集成在被动硅和氮化硅波导中。我们还讨论了我们最近在CMOS试点线上完全制造此类设备的工作。在下一节中,我们回顾基于石墨烯的相位调节器。再次,我们比较了两种类型的调节器,涉及单个或双石墨烯层堆栈。此外,我们还提出了新的结果,将集成在标准带状波导上的调节器与集成在插槽波导上的调节器进行比较,从而使光场更加限制。最后,我们基于模拟结果总结了我们的发现以及现场和前景。索引项 - 准烯,调节剂,硅光子学。
印度海得拉巴 Sridevi 女子工程学院 EEE 系。摘要 使用微控制器和脉冲宽度调制 (PWM) 技术调节直流电机的速度是本项目的主要目标。每个机器人项目都严重依赖直流电机控制。在许多应用中,旋转具有高或低速度限制的直流电机是必要的。我们为此采用 PWM 方法。在脉冲宽度调制 (PWM) 电路中,可以通过调整开关比将平均导通时间从零调整到百分之百,从而产生方波。这允许改变对负载的功率输送。与电阻功率控制器相比,脉冲宽度调制 (PWM) 电路效率更高。当设置为 50% 的负载功率时,PWM 使用大约 50% 的全功率,几乎所有功率都流向负载。相比之下,电阻控制器使用大约 71% 的全功率,其中一半功率流向负载,另外 21% 的功率浪费在加热串联电阻上。脉冲宽度调制还有一个额外的好处,就是允许脉冲达到整个电源电压。这样,它们就能够更容易地克服电机内部的阻力,从而在电机中产生更大的扭矩。这个项目采用了使用嵌入式 C 指令编码的车载计算机。车载计算机可以与输入和输出模块通信。为了显示直流电机的当前速度,LCD 充当输出模块。可以使用控制按钮调整电机的速度。
1麦格纳·格拉西亚大学临床和实验医学系,意大利卡坦扎罗88100; elisamazza@unicz.it(E.M.); tmontalcini@unicz.it(t.m。)2食品,营养和饮食学的技术科学协会(ASAND),意大利卡塔尼亚95128; ersilia.troiano@gmail.com(E.T。); fabrizia.lisso92@gmail.com(F.L.)3罗马三世市的社会教育局,意大利罗马00139 00139 4医学和外科科学系,MagnaGræcia大学,意大利Catanzaro 88100; yferro@unicz.it(y.f.); roberta.puj@gmail.com(R.P.)5“ Sant'anna”医院,圣费尔莫Della Battaglia,22042 COMO,意大利Como 6卫生科学系,米兰大学,20146年,米兰,意大利7号公共卫生系“ Federico II”公共卫生系,“ Federico II”,意大利80131 NAPLES,意大利; ettoreturco@gmail.com 8研究中心预防与治疗代谢疾病,MagnaGræcia,88100,意大利Catanzaro *通信:martina.tosi@unimi.it5“ Sant'anna”医院,圣费尔莫Della Battaglia,22042 COMO,意大利Como 6卫生科学系,米兰大学,20146年,米兰,意大利7号公共卫生系“ Federico II”公共卫生系,“ Federico II”,意大利80131 NAPLES,意大利; ettoreturco@gmail.com 8研究中心预防与治疗代谢疾病,MagnaGræcia,88100,意大利Catanzaro *通信:martina.tosi@unimi.it
石墨烯中的表面等离子体极化子(SPP)是理论和实验研究的一个有趣领域,尤其是在石墨烯层中支持具有横向电动(TE)极化的SPP的可能性[1]。最近,使用复杂的频率方法在非零温度下[2]的扩展频率范围显示,显示了TE SPP在非零的频率范围中存在,该方法使用复杂的频率方法模拟具有时间衰减的开放系统。由于石墨烯的电导率很小,与细胞结构常数成正比[1],TE SPP频率色散非常接近光线,但由于其分散曲线位于光线下方,因此无法通过外部入射的光激发TE SPP。石墨烯以其光导率的可调节性而闻名,它通过应用合适的栅极电压来诱导易于易于的化学电位[3]。这是因为电子过渡出现在k点附近[4],其中电子色散是线性的,状态的密度消失。诸如光学调节剂[5]和极化器[6]等设备以及吸收增强设备[7,8],从这种可调性中受益,该可调性与石墨烯中TE SPP的存在一起,为等离子应用提供了令人兴奋的前景[9]。此外,使用定期石墨烯的结构打开了应用磁场时产生拓扑等离子状态的可能性[10-13]。已经研究了石墨烯[14 - 17]的周期性等离子结构,甚至是周期性石墨烯条的多层堆栈[18-22]。堆叠石墨烯二级层对横向磁性(TM)SPPS性质的影响也具有
Santec 的企业理念是通过光学技术的创新为世界提供新价值。我们开发、制造并向光传输设备制造商销售光通信组件。我们还为光学测量、光学处理和光学信息处理领域提供采用 LCOS 技术的空间光调制器。
5-羟色胺2受体(5HT2R)激动剂psilocybin在神经术 - 跨科学疾病中表现出快速而持续的治疗疗效,这些疾病的特征是认知僵化。然而,尚未表征psilocybin对行为灵活性持续变化的神经活动模式的影响。测试了psilocybin通过改变皮质神经合奏中活性增强行为柔韧性的假设,我们在为期五天的痕量恐惧学习和灭绝测定中进行了延误皮质中的纵向单细胞成像。一剂psilo-cybin引起的恐惧学习和灭绝日之间的集合周转,同时相反地调节了恐惧和灭绝活性神经元中的活动。急性抑制恐惧活性神经元和延迟灭绝活性神经元的募集是预测psilocybin增强恐惧灭绝的。一个计算模型表明,psilocybin对恐惧活性神经元的急性抑制足以解释其几天后其神经和行为效应。这些结果与我们的假设保持一致,并引入了一种新的机制,涉及回合膜皮质中恐惧活性种群的抑制。
解决方案处理的2D材料对其可扩展应用有望。但是,通过离散网络通过离散网络的解决方案处理的纳米量和较差的渗透性传导的随机,零散的性质限制了启用设备的性能。为了克服该问题,通过Stark效应报告了解决方案处理的2D材料的传导调节。以液相去角质的钼二硫化(MOS 2)为例,从界面界面的局部领域证明了以> 10 5为> 10 5的非线性传导切换(VDF-TRFE)。通过密度功能理论的计算以及原位拉曼散射和光致发光光谱分析,该调制是由溶液处理的MOS 2中的电荷重新分布引起的。超过MOS 2,可以显示其他溶液处理的2D材料和低维材料的有效。调制可以打开其电子设备应用,例如,薄膜非线性电子和非挥发性记忆。
研究文章|行为/认知经颅交流电流刺激在正面眼场上刺激模仿视觉处理的注意调节https://doi.org/10.1523/jneurosci.1510-23.2024收到:2023年8月7日收到:2024年4月16日接受:2024年4月17日接受:2024年4月17日,2024年4月17日
本文探讨了时空编码在波束控制中的应用,使用 1 位、2 位和 3 位可重构编码超表面。通过周期性地改变时间域中的代码排列,实现了在空间和时间上具有代码顺序的超表面。选定的代码用于在雷达传感系统应用中将波束引导到不同的方向。通过控制每个代码序列中不同位的位置来改变谐波信号的相位。8×8 单元格元素(120×120×3.2 mm 3 )的构造涉及使用充满惰性氩气的接地介电容器。超表面逻辑状态通过惰性气体的电离度来控制,时间切换控制谐波频率。研究了不同的时间切换序列用于波束控制。使用 CST Microwave Studio 分析了所提出的编码超表面,并使用 MATLAB 将结果与解析解进行了比较。