4 “发电机容量”是指“发电设备能够向系统负载提供的最大输出,通常以兆瓦 (MW) 表示,并根据环境条件进行调整。”美国能源信息管理局,词汇表,https://www.eia.gov/tools/glossary/index.php?id=G#gen_cap (访问于 2022 年 10 月 14 日)。5 “可调度性”是指发电设施在需要时根据电网运营商的要求提供服务以满足市场需求的能力。 (有关更多信息,请参阅以下内容:卡尔加里大学能源教育,https://energyeducation.ca/encyclopedia/Dispatchable_source_of_electricity(访问时间:2022 年 10 月 12 日)。了解有关发电的“可调度”术语,NMPP Energy,https://www.nmppenergy.org/energy-education/understanding- term-dispatchable-regarding-electricity-generation(访问时间:2022 年 10 月 12 日))。 6“负荷跟踪能力”是指调整发电设施的功率输出以保持电力系统匹配供需的能力。 (有关更多信息,请参阅以下内容:负荷跟踪发电厂,https://www.nuclear-power.com/nuclear-power/reactor-physics/reactor-operation/normal-operation-reactor-control/load-following-power-plant/(访问时间:2022 年 10 月 12 日))。
监视海域对于确保对任何与海上安全或保障有关的不利情况做出适当反应至关重要。电光搜索和跟踪 (EOST) 系统通过提供对海洋环境中潜在目标的独立搜索和跟踪发挥着至关重要的作用。EOST 提供物体的实时图像,其中包含消除威胁所需的细节。在远距离,由于杂乱场景下目标特征的不确定性,EOST 的检测和跟踪能力会下降。通过使用合适的传感器和使用目标/背景特征知识进行增强,可以提高图像质量。通过优化跟踪器的性能参数,可以实现对物体的稳健跟踪。在目前的研究中,讨论了传感器、视频处理器和视频跟踪器等 EOST 子系统性能的改进。为了提高 EOST 在检测和跟踪方面的性能,还讨论了传感器选择标准和各种实时图像处理技术及其在海上应用的选择标准。介绍了在海洋环境下记录的图像质量的最终改进。
摘要 — 随着可再生能源不断融入电网,储能已成为支撑电力系统发展的重要技术。为有效提高储能效率和经济性,开发了具有多个储能电池的集中式共享储能 (SES) 站,以实现一组实体之间的能源交易。在本文中,我们提出了针对集中式 SES 站的动态分区策略优化运行,考虑到大型可再生能源发电厂的日前需求。我们基于纳什讨价还价理论实现了多实体合作优化运行模型。该模型分解为两个子问题:带有能源交易的运营利润最大化问题和租赁付款讨价还价问题。采用分布式交替方向乘数法 (ADMM) 分别解决子问题。仿真结果表明,采用动态分割策略的优化运行能够提高可再生能源实体对计划出力的跟踪能力,提高储能实际利用率,增加各参与实体的利润。结果验证了该策略的实用性和有效性。
摘要。本文提出了一种基于方位/仰角环跟踪控制器的新型模糊PID控制方案,以提高跟踪实时目标的精度。模糊PID控制器由三个模糊逻辑控制器和一个带模型参考自适应控制的PID控制器组成,其中PID控制器的三个参数的自适应增益由模糊逻辑规则进行微调。所提出的控制算法的隶属函数(MF)与一般算法不同,其中输入和输出的MF彼此不同,例如MF类型,MF数量和显示范围。将所提出的模糊PID控制方法的性能与普通PID控制算法进行了比较。仿真验证了模糊PID控制模型跟踪性能的有效性,该模型具有零超调、良好的瞬态性能和快速收敛跟踪能力。模糊PID跟踪控制算法可以提高系统整体性能,为深入研究基于机载光电稳定平台的控制系统奠定理论基础。关键词:模糊PID,跟踪控制器,优化方案,稳定平台
本文讨论了一种不使用 GPS 信号的垂直飞行器自主着陆的机器学习视觉和非线性控制方法。核心思想涉及自动化海军直升机着陆程序,其中飞行员利用船舶作为远程跟踪的视觉参考,但在最终进近和着陆阶段参考大多数海军舰艇上安装的标准化视觉提示,称为“地平线”。这个想法是使用与机器视觉集成的独特设计的非线性控制器实现的。视觉系统利用基于机器学习的物体检测进行远程船舶跟踪,并利用经典计算机视觉进行物体检测和估计飞机在最终进近和着陆阶段的相对位置和方向。非线性控制器基于视觉系统估计的信息运行,即使在存在不确定性的情况下也表现出强大的跟踪性能。开发的自主船舶着陆系统在配备机载摄像头的四旋翼垂直起降 (VTOL) 无人机 (UAV) 上实施,并在移动甲板上进行了演示,该甲板使用 Stewart 平台和相当于地平线的视觉提示模拟真实的船舶甲板运动。进行了广泛的模拟和飞行测试,以展示甲板运动时的垂直着陆安全性、跟踪能力和着陆准确性
摘要 本文提出了一种稳健的非线性飞行控制策略,该策略基于增量控制行为和反步设计方法相结合的结果,适用于由严格反馈(级联)非线性系统描述的飞行器。该方法称为增量反步,使用执行器状态和加速度估计的反馈来设计控制行为的增量。与反步相结合,所提出的方法可以逐步稳定或跟踪非线性系统的外环控制变量,同时考虑较大的模型和参数不确定性以及外部扰动和气动建模误差等不良因素。这一结果大大降低了对建模飞机系统的依赖,克服了传统的基于模型的飞行控制策略的主要稳健性缺陷。这种建议的方法意味着在动态模型的准确知识和飞行器传感器和执行器的准确知识之间进行权衡,这使得它比基于识别或模型的自适应控制架构更适合实际应用。针对一个简单的飞行控制示例,仿真结果验证了所提出的控制器在气动不确定性条件下相对于标准反步方法的跟踪能力和卓越的鲁棒性。
本文介绍了 DSTO 在开发基于模型的方法以诊断和预测由通用电气 T700 发动机驱动的澳大利亚国防军 (ADF) 直升机的气路健康状况方面取得的进展。特别是,介绍了两种新的基于模型的工具:一种用于估计功率保证,一种用于检测异常发动机运行。这些工具的开发是为了利用现代健康和使用监测系统 (HUMS) 记录的发动机参数。正在考虑将此类系统安装到 ADF 直升机上,作为中期升级和采购项目的一部分。第一个工具是基于 T700 模型的功率保证估算器,建议与当前的健康指标测试 (HIT) 检查一起使用,它将 HIT 检查值与给定飞行条件和组件退化场景的可用功率联系起来。第二种工具是基于模型的检测器和模糊逻辑决策器的组合,最初建议用于 HUMS 地面站,以减少手动处理或查询的数据量。DSTO 开发的 MATLAB-Simulink 真双 T700 发动机模型具有对瞬态飞行数据的精确跟踪能力,可以检测给定飞行过程中发动机状况的重大变化。然后,模糊逻辑公式可以自动执行此检测过程,并为未来预测趋势提供飞行结束估计。
本文介绍了 DSTO 在开发基于模型的方法以诊断和预测由通用电气 T700 发动机驱动的澳大利亚国防军 (ADF) 直升机的气路健康状况方面取得的进展。特别是,介绍了两种新的基于模型的工具:一种用于估计功率保证,一种用于检测异常发动机运行。这些工具的开发是为了利用现代健康和使用监测系统 (HUMS) 记录的发动机参数。正在考虑将此类系统安装到 ADF 直升机上,作为中期升级和采购项目的一部分。第一个工具是基于 T700 模型的功率保证估算器,建议与当前的健康指标测试 (HIT) 检查一起使用,它将 HIT 检查值与给定飞行条件和组件退化场景的可用功率联系起来。第二种工具是基于模型的检测器和模糊逻辑决策器的组合,最初建议用于 HUMS 地面站,以减少手动处理或查询的数据量。DSTO 开发的 MATLAB-Simulink 真双 T700 发动机模型具有对瞬态飞行数据的精确跟踪能力,可以检测给定飞行过程中发动机状况的重大变化。然后,模糊逻辑公式可以自动执行此检测过程,并为未来预测趋势提供飞行结束估计。
垂直起降(VTOL)是无人机(UAV)的基本功能。VTOL一方面可以拓展和增强无人机的应用领域,但另一方面也使得无人机控制系统的设计更加复杂。控制系统设计中最具挑战性的需求是实现固定翼无人机对控制指令满意的响应敏锐度以及确保飞机模态通道有效解耦。本文在气动分析的基础上,建立了含有力和力矩的六自由度(6-DoF)模型,并通过计算流体力学(CFD)数值模拟进行气动分析。提出一种基于扩张状态观测器(ESO)的改进比例微分(PD)控制器来设计内环姿态控制,增强了无人机系统对内外部不确定性的抗干扰能力。建立无人机运动方程,将运动方程分解为纵向和横侧两个独立运动分量,设计小扰动条件下的外环控制律;提出一种纵向高度通道总能量控制系统(TECS),将速度控制与航迹控制分离;横侧轨迹跟踪采用L1非线性路径跟踪制导算法,提高曲线跟踪能力和抗风能力。实飞实验数据证明了该方法的有效性。最后,设计了一种控制律。
摘要:清真鸡肉肉供应链(HCMSC)是一种符合Syariah的供应链,它嵌入了多个关键控制点,旨在保留清真清真的完整性并确保食品安全和鸡肉的质量。根据MHMS 2020,清真关键点是需要确定需要确定的清真控制,可以防止或消除进行控制和污染,以确保沿供应链沿岸的清真依从性。清真可食用性系统(HTS)在HCMSC中至关重要,以确保产品信息在某些识别的关键控制点的轨迹和跟踪能力从其起源到消费者到达消费者。这些关键控制点是清真保证系统(必须)申请清真认证的关键组成部分。这项研究的目的是在马来西亚场景中识别HCMSC中的Halal可追溯性关键控制点(HTCCP),并探讨食品可食用性系统中物联网(IoT)的潜在计划。这是通过对有关清真可追溯性和物联网作为可追溯性工具的过去研究的结构化审查来完成的。该研究将七个HTCCP识别为跨杀人,屠宰,屠宰,杀害后和最终消费者阶段,而物联网集成为HTS-HCMSC框架的支持平台。